Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Kernel] Initial Machete W4A8 support + Refactors #9855

Merged
merged 9 commits into from
Nov 18, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
519 changes: 385 additions & 134 deletions benchmarks/kernels/benchmark_machete.py

Large diffs are not rendered by default.

5 changes: 3 additions & 2 deletions benchmarks/kernels/graph_machete_bench.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,10 +20,11 @@
args = parser.parse_args()

with open(args.filename, 'rb') as f:
data: List[TMeasurement] = pickle.load(f)
data = pickle.load(f)
raw_results: List[TMeasurement] = data["results"]

results = defaultdict(lambda: list())
for v in data:
for v in raw_results:
result = re.search(r"MKN=\(\d+x(\d+x\d+)\)", v.task_spec.sub_label)
if result is not None:
KN = result.group(1)
Expand Down
6 changes: 6 additions & 0 deletions benchmarks/kernels/weight_shapes.py
Original file line number Diff line number Diff line change
Expand Up @@ -40,4 +40,10 @@
([8192, 57344], 1),
([28672, 8192], 0),
],
"meta-llama/Llama-3.1-405b-hf": [
([16384, 18432], 1),
([16384, 16384], 0),
([16384, 106496], 1),
([53248, 16384], 0),
],
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

nit : for big models, I have found it useful to have their realistic TPn counter-parts also (e.g. for the 70B case, add a 70B-TP4 case). That way we can just list that version in the 1GPU model benchmarking.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

You mean so you can list it as a string as opposed to using the --tp-sizes args?

}
4 changes: 2 additions & 2 deletions csrc/cutlass_extensions/cute_utils.cuh
Original file line number Diff line number Diff line change
Expand Up @@ -20,9 +20,9 @@ CUTE_HOST_DEVICE static constexpr auto permute_layout(Layout l) {
// is the layout f(x) = x
template <typename Layout>
CUTE_HOST_DEVICE static constexpr bool is_identity_layout() {
if constexpr (std::is_same_v<Layout, void>)
if constexpr (std::is_same_v<Layout, void>) {
return true;
else {
} else {
constexpr auto coalesced_layout = coalesce(Layout{});
if constexpr (rank(coalesced_layout) == 1 &&
stride<0>(coalesced_layout) == 1) {
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -52,6 +52,7 @@
// clang-format off

#include "cutlass/epilogue/threadblock/fusion/visitor_2x.hpp"
#include "cutlass/epilogue/threadblock/fusion/visitors.hpp"
LucasWilkinson marked this conversation as resolved.
Show resolved Hide resolved
#include "cute/tensor.hpp"

namespace cutlass::epilogue::threadblock {
Expand Down
317 changes: 317 additions & 0 deletions csrc/cutlass_extensions/epilogue/scaled_mm_epilogues_c2x.hpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,317 @@
#include "cutlass_extensions/epilogue/broadcast_load_epilogue_c2x.hpp"

/*
This file defines custom epilogues for fusing channel scales, token scales,
bias, and activation zero-points onto a GEMM operation using the
CUTLASS 2.x API, for sm80 (Ampere) NVIDIA GPUs.

Epilogues must contain a public type named EVTCompute of type Sm80EVT,
as well as a static prepare_args function that constructs an
EVTCompute::Arguments struct.
*/

namespace vllm::c2x {

using namespace cute;

/*
* This class provides the common load descriptors for the
* ScaledEpilogue[...] classes
*/
template <typename ElementD, typename OutputTileThreadMap>
struct ScaledEpilogueBase {
protected:
using Accum = cutlass::epilogue::threadblock::VisitorAccFetch;

template <typename T>
using ColOrScalarLoad =
cutlass::epilogue::threadblock::VisitorColOrScalarBroadcast<
OutputTileThreadMap, T, Stride<Int<1>, Int<0>, Int<0>>>;

template <typename T>
using RowOrScalarLoad =
cutlass::epilogue::threadblock::VisitorRowOrScalarBroadcast<
OutputTileThreadMap, T, Stride<Int<0>, Int<1>, Int<0>>>;

template <typename T>
using ColLoad = cutlass::epilogue::threadblock::VisitorColBroadcast<
OutputTileThreadMap, T, Stride<Int<1>, Int<0>, Int<0>>>;

template <typename T>
using RowLoad = cutlass::epilogue::threadblock::VisitorRowBroadcast<
OutputTileThreadMap, T, Stride<Int<0>, Int<1>, Int<0>>>;

template <typename T>
using RowOrZeroLoad =
cutlass::epilogue::threadblock::VisitorRowOrZeroBroadcast<
OutputTileThreadMap, T, Stride<Int<0>, Int<1>, Int<0>>>;

// This utility function constructs the arguments for the load descriptors
// from a tensor. It can handle both row and column, as well as row/column or
// scalar cases.
template <typename Descriptor, typename T>
static auto args_from_tensor(torch::Tensor const& tensor) {
using Arguments = typename Descriptor::Arguments;
auto* data_ptr = static_cast<T*>(tensor.data_ptr());
if constexpr (std::is_same_v<Descriptor, ColOrScalarLoad<T>> ||
std::is_same_v<Descriptor, RowOrScalarLoad<T>>) {
return Arguments{data_ptr, tensor.numel() != 1};
} else {
// it would technically work but no use case as data_ptr is never nullptr
static_assert(!std::is_same_v<Descriptor, RowOrZeroLoad<T>>);
return Arguments{data_ptr};
}
}

// This overload handles the case where there might not be a tensor, in which
// case a nullptr is passed and a constant (0) is used.
template <typename Descriptor, typename T>
static auto args_from_tensor(c10::optional<torch::Tensor> const& tensor) {
static_assert(std::is_same_v<Descriptor, RowOrZeroLoad<T>>);
using Arguments = typename Descriptor::Arguments;
auto* data_ptr = tensor ? static_cast<T*>(tensor->data_ptr()) : nullptr;
return Arguments{data_ptr};
}
};

/*
This epilogue function defines a quantized GEMM operation similar to
torch._scaled_mm.

A and B may be both either int8 or fp8_e4m3. A can be quantized per-tensor or
per-row. B can be quantized per-tensor or per-column.
Any combination of per-tensor and per-row or column is supported.
A and B must have symmetric quantization (zero point == 0).

So the GEMM operation is D = (a_scales * A) (b_scales * B), where the
scales are applied elementwise with numpy-style broadcasting.

ScaleA and ScaleB define the epilogue functions that apply the scales for
the A and B operands respectively. These scales may be either per-tensor or
per row or column.
*/
template <typename ElementD, typename OutputTileThreadMap>
struct ScaledEpilogue
: private ScaledEpilogueBase<ElementD, OutputTileThreadMap> {
private:
using SUPER = ScaledEpilogueBase<ElementD, OutputTileThreadMap>;
using Accum = typename SUPER::Accum;
using ScaleA = typename SUPER::template ColOrScalarLoad<float>;
using ScaleB = typename SUPER::template RowOrScalarLoad<float>;

using Compute0 = cutlass::epilogue::threadblock::VisitorCompute<
cutlass::multiplies, float, float,
cutlass::FloatRoundStyle::round_to_nearest>;

using EVTCompute0 =
cutlass::epilogue::threadblock::Sm80EVT<Compute0, ScaleB, Accum>;

using Compute1 = cutlass::epilogue::threadblock::VisitorCompute<
cutlass::multiplies, ElementD, float,
cutlass::FloatRoundStyle::round_to_nearest>;

public:
using EVTCompute =
cutlass::epilogue::threadblock::Sm80EVT<Compute1, ScaleA, EVTCompute0>;
using ArgumentType = typename EVTCompute::Arguments;

static ArgumentType prepare_args(torch::Tensor const& a_scales,
torch::Tensor const& b_scales) {
auto a_args = SUPER::template args_from_tensor<ScaleA, float>(a_scales);
auto b_args = SUPER::template args_from_tensor<ScaleB, float>(b_scales);

typename EVTCompute0::Arguments evt0_args{b_args};
return ArgumentType{a_args, evt0_args};
}
};

/*
* This epilogue performs the same operation as ScaledEpilogue, but adds a bias.
* This bias can also be used in the per-tensor azp case, where the activation
* zero point (azp) is used to compute an azp correction term,
* which is folded into the bias.
*
* The bias tensor must be per-output channel.
* ScaleA and ScaleB can be per-tensor or per-token/per-channel.
*/
template <typename ElementD, typename OutputTileThreadMap>
struct ScaledEpilogueBias
: protected ScaledEpilogueBase<ElementD, OutputTileThreadMap> {
protected:
using SUPER = ScaledEpilogueBase<ElementD, OutputTileThreadMap>;
using Accum = typename SUPER::Accum;
using ScaleA = typename SUPER::template ColOrScalarLoad<float>;
using ScaleB = typename SUPER::template RowOrScalarLoad<float>;
using Bias = typename SUPER::template RowLoad<ElementD>;
using Compute0 = cutlass::epilogue::threadblock::VisitorCompute<
cutlass::multiplies, float, float,
cutlass::FloatRoundStyle::round_to_nearest>;

using EVTCompute0 =
cutlass::epilogue::threadblock::Sm80EVT<Compute0, ScaleB, Accum>;

using Compute1 = cutlass::epilogue::threadblock::VisitorCompute<
cutlass::multiply_add, ElementD, float,
cutlass::FloatRoundStyle::round_to_nearest>;

public:
using EVTCompute = cutlass::epilogue::threadblock::Sm80EVT<Compute1, ScaleA,
EVTCompute0, Bias>;
using ArgumentType = typename EVTCompute::Arguments;
static ArgumentType prepare_args(torch::Tensor const& a_scales,
torch::Tensor const& b_scales,
torch::Tensor const& bias) {
auto a_args = SUPER::template args_from_tensor<ScaleA, float>(a_scales);
auto b_args = SUPER::template args_from_tensor<ScaleB, float>(b_scales);
auto bias_args = SUPER::template args_from_tensor<Bias, ElementD>(bias);

typename EVTCompute0::Arguments evt0_args{b_args};
return ArgumentType{a_args, evt0_args, bias_args};
}
};

/*
* This epilogue directly supports per-tensor azp in int32 form.
* As opposed to the per-token epilogue below, this epilogue only has an azp_adj
* term, which should already be multiplied with the scalar azp.
* The azp_adj term is a 1D tensor of shape (1,n), computed as azp * J @ B.
*
* This epilogue also supports bias, which remains per-channel.
*/
template <typename ElementD, typename OutputTileThreadMap>
struct ScaledEpilogueBiasAzp
: protected ScaledEpilogueBase<ElementD, OutputTileThreadMap> {
private:
using SUPER = ScaledEpilogueBase<ElementD, OutputTileThreadMap>;
using Accum = typename SUPER::Accum;
using ScaleA = typename SUPER::template ColOrScalarLoad<float>;
using ScaleB = typename SUPER::template RowOrScalarLoad<float>;
using Bias = typename SUPER::template RowOrZeroLoad<ElementD>;

// This is the full AZP term, azp * J @ B, shape (1,n)
using AzpWithAdj = typename SUPER::template RowLoad<int32_t>;

// Compute float(accum - azp_adj), both operands are int32_t
using ComputeAzp = cutlass::epilogue::threadblock::VisitorCompute<
cutlass::minus, float, int32_t,
cutlass::FloatRoundStyle::round_to_nearest>;

using EVTComputeAzp =
cutlass::epilogue::threadblock::Sm80EVT<ComputeAzp, Accum, AzpWithAdj>;

using ComputeScaleB = cutlass::epilogue::threadblock::VisitorCompute<
cutlass::multiplies, float, float,
cutlass::FloatRoundStyle::round_to_nearest>;

using EVTComputeScaleB =
cutlass::epilogue::threadblock::Sm80EVT<ComputeScaleB, ScaleB,
EVTComputeAzp>;

using ComputeScaleBiasA = cutlass::epilogue::threadblock::VisitorCompute<
cutlass::multiply_add, ElementD, float,
cutlass::FloatRoundStyle::round_to_nearest>;

public:
using EVTCompute =
cutlass::epilogue::threadblock::Sm80EVT<ComputeScaleBiasA, ScaleA,
EVTComputeScaleB, Bias>;

using ArgumentType = typename EVTCompute::Arguments;

static ArgumentType prepare_args(torch::Tensor const& a_scales,
torch::Tensor const& b_scales,
torch::Tensor const& azp_adj,
c10::optional<torch::Tensor> const& bias) {
auto a_args = SUPER::template args_from_tensor<ScaleA, float>(a_scales);
auto b_args = SUPER::template args_from_tensor<ScaleB, float>(b_scales);
auto bias_args = SUPER::template args_from_tensor<Bias, ElementD>(bias);
auto azp_adj_args =
SUPER::template args_from_tensor<AzpWithAdj, int32_t>(azp_adj);

typename EVTComputeAzp::Arguments evt_azp_args{{}, azp_adj_args};
typename EVTComputeScaleB::Arguments evt_scale_b_args{b_args, evt_azp_args};
return ArgumentType{a_args, evt_scale_b_args, bias_args};
}
};

/*
* This epilogue supports per-token azp by computing and applying
* the correction term using a rank-1 update. If the term were materialized,
* it would require O(m*n) space, and this way it only requires O(m+n) space.
* The azp term is a 1D tensor of shape (m,1), and represents the unscaled zero
* point for each row of A.
* The azp_adj term is a 1D tensor of shape (1,n), computed as J @ B.
*
* This epilogue also supports bias, which remains per-channel.
*/
template <typename ElementD, typename OutputTileThreadMap>
struct ScaledEpilogueBiasAzpToken
: protected ScaledEpilogueBase<ElementD, OutputTileThreadMap> {
private:
using SUPER = ScaledEpilogueBase<ElementD, OutputTileThreadMap>;
using Accum = typename SUPER::Accum;
using ScaleA = typename SUPER::template ColOrScalarLoad<float>;
using ScaleB = typename SUPER::template RowOrScalarLoad<float>;
using Bias = typename SUPER::template RowOrZeroLoad<ElementD>;

// Per-token azp term, shape (m,1)
using Azp = typename SUPER::template ColLoad<int32_t>;

// This is the AZP adjustment term, J @ B, shape (1,n)
using AzpAdj = typename SUPER::template RowLoad<int32_t>;

// Compute azp * azp_adj
using ComputeAzp = cutlass::epilogue::threadblock::VisitorCompute<
cutlass::multiplies, int32_t, int32_t,
cutlass::FloatRoundStyle::round_to_nearest>;

using EVTComputeAzp =
cutlass::epilogue::threadblock::Sm80EVT<ComputeAzp, Azp, AzpAdj>;

// Compute float(accum - azp*azp_adj), all operands are int32_t
using ComputeAcc = cutlass::epilogue::threadblock::VisitorCompute<
cutlass::minus, float, int32_t,
cutlass::FloatRoundStyle::round_to_nearest>;

using EVTComputeAcc =
cutlass::epilogue::threadblock::Sm80EVT<ComputeAcc, Accum, EVTComputeAzp>;

using ComputeScaleB = cutlass::epilogue::threadblock::VisitorCompute<
cutlass::multiplies, float, float,
cutlass::FloatRoundStyle::round_to_nearest>;

using EVTComputeScaleB =
cutlass::epilogue::threadblock::Sm80EVT<ComputeScaleB, ScaleB,
EVTComputeAcc>;

using ComputeScaleBiasA = cutlass::epilogue::threadblock::VisitorCompute<
cutlass::multiply_add, ElementD, float,
cutlass::FloatRoundStyle::round_to_nearest>;

public:
using EVTCompute =
cutlass::epilogue::threadblock::Sm80EVT<ComputeScaleBiasA, ScaleA,
EVTComputeScaleB, Bias>;

using ArgumentType = typename EVTCompute::Arguments;

static ArgumentType prepare_args(torch::Tensor const& a_scales,
torch::Tensor const& b_scales,
torch::Tensor const& azp_adj,
torch::Tensor const& azp,
c10::optional<torch::Tensor> const& bias) {
auto a_args = SUPER::template args_from_tensor<ScaleA, float>(a_scales);
auto b_args = SUPER::template args_from_tensor<ScaleB, float>(b_scales);
auto bias_args = SUPER::template args_from_tensor<Bias, ElementD>(bias);
auto azp_args = SUPER::template args_from_tensor<Azp, int32_t>(azp);
auto azp_adj_args =
SUPER::template args_from_tensor<AzpAdj, int32_t>(azp_adj);

typename EVTComputeAzp::Arguments evt_azp_args{azp_args, azp_adj_args};
typename EVTComputeAcc::Arguments evt_acc_args{{}, evt_azp_args};
typename EVTComputeScaleB::Arguments evt_scale_b_args{b_args, evt_acc_args};
return ArgumentType{a_args, evt_scale_b_args, bias_args};
}
};

}; // namespace vllm::c2x
Loading