Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[bugfix] interleaving sliding window for cohere2 model #11583

Merged
merged 5 commits into from
Dec 28, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion docs/source/models/supported_models.md
Original file line number Diff line number Diff line change
Expand Up @@ -112,7 +112,7 @@ See [this page](#generative-models) for more information on how to use generativ
- :code:`THUDM/chatglm2-6b`, :code:`THUDM/chatglm3-6b`, etc.
- ✅︎
- ✅︎
* - :code:`CohereForCausalLM`,:code:`Cohere2ForCausalLM`
* - :code:`CohereForCausalLM`, :code:`Cohere2ForCausalLM`
DarkLight1337 marked this conversation as resolved.
Show resolved Hide resolved
- Command-R
- :code:`CohereForAI/c4ai-command-r-v01`, :code:`CohereForAI/c4ai-command-r7b-12-2024`, etc.
- ✅︎
Expand Down
4 changes: 0 additions & 4 deletions tests/models/test_initialization.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,6 @@
from unittest.mock import patch

import pytest
import transformers
from transformers import PretrainedConfig

from vllm import LLM
Expand All @@ -12,9 +11,6 @@
@pytest.mark.parametrize("model_arch", HF_EXAMPLE_MODELS.get_supported_archs())
def test_can_initialize(model_arch):
model_info = HF_EXAMPLE_MODELS.get_hf_info(model_arch)
if (model_arch == "Cohere2ForCausalLM"
and transformers.__version__ < "4.48.0"):
pytest.skip(reason="Model introduced in HF >= 4.48.0")
if not model_info.is_available_online:
pytest.skip("Model is not available online")

Expand Down
2 changes: 1 addition & 1 deletion vllm/config.py
Original file line number Diff line number Diff line change
Expand Up @@ -301,7 +301,7 @@ def __init__(self,
sliding_window = getattr(self.hf_text_config, "sliding_window", None)
has_interleaved_attention = (sliding_window is not None) and (
isinstance(sliding_window, list) or
(self.hf_text_config.model_type in ["gemma2"]))
(self.hf_text_config.model_type in ["gemma2", "cohere2"]))

if (not self.disable_sliding_window and has_interleaved_attention):
if envs.VLLM_ATTENTION_BACKEND == "XFORMERS":
Expand Down
10 changes: 6 additions & 4 deletions vllm/model_executor/models/commandr.py
Original file line number Diff line number Diff line change
Expand Up @@ -172,16 +172,18 @@ def __init__(
is_neox_style=False,
)

sliding_window = getattr(config, "sliding_window", None)
# Model v2 has sliding windows, v1 does not
self.v1 = sliding_window is None
# Model v2 has interleaved sliding windows, v1 does not
interleaved_sliding_window = getattr(config,
"interleaved_sliding_window",
None)
self.v1 = interleaved_sliding_window is None

layer_idx = extract_layer_index(prefix)
layer_has_sliding_window = (
getattr(config, "sliding_window_pattern", False)
and (layer_idx + 1) % self.config.sliding_window_pattern != 0)

self.sliding_window = (sliding_window
self.sliding_window = (interleaved_sliding_window
if layer_has_sliding_window else None)

self.attn = Attention(self.num_heads,
Expand Down
7 changes: 4 additions & 3 deletions vllm/transformers_utils/config.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,9 +22,9 @@
from vllm.logger import init_logger
# yapf conflicts with isort for this block
# yapf: disable
from vllm.transformers_utils.configs import (ChatGLMConfig, DbrxConfig,
EAGLEConfig, ExaoneConfig,
H2OVLChatConfig,
from vllm.transformers_utils.configs import (ChatGLMConfig, Cohere2Config,
DbrxConfig, EAGLEConfig,
ExaoneConfig, H2OVLChatConfig,
InternVLChatConfig, JAISConfig,
MedusaConfig, MllamaConfig,
MLPSpeculatorConfig, MPTConfig,
Expand Down Expand Up @@ -52,6 +52,7 @@

_CONFIG_REGISTRY: Dict[str, Type[PretrainedConfig]] = {
"chatglm": ChatGLMConfig,
"cohere2": Cohere2Config,
"dbrx": DbrxConfig,
"mpt": MPTConfig,
"RefinedWeb": RWConfig, # For tiiuae/falcon-40b(-instruct)
Expand Down
2 changes: 2 additions & 0 deletions vllm/transformers_utils/configs/__init__.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
from vllm.transformers_utils.configs.chatglm import ChatGLMConfig
from vllm.transformers_utils.configs.cohere2 import Cohere2Config
from vllm.transformers_utils.configs.dbrx import DbrxConfig
from vllm.transformers_utils.configs.eagle import EAGLEConfig
from vllm.transformers_utils.configs.exaone import ExaoneConfig
Expand All @@ -22,6 +23,7 @@

__all__ = [
"ChatGLMConfig",
"Cohere2Config",
"DbrxConfig",
"MPTConfig",
"RWConfig",
Expand Down
192 changes: 192 additions & 0 deletions vllm/transformers_utils/configs/cohere2.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,192 @@
# ruff: noqa

# Adapted from
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/cohere2/configuration_cohere2.py
from transformers import PretrainedConfig
from transformers.modeling_rope_utils import rope_config_validation


class Cohere2Config(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`CohereModel`]. It is used to instantiate an Cohere
model according to the specified arguments, defining the model architecture.

Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information. Instantiating a configuration
with the defaults will yield a similar configuration to that of the [CohereForAI/c4ai-command-r-v01](https://huggingface.co/CohereForAI/c4ai-command-r-v01) model.


Args:
vocab_size (`int`, *optional*, defaults to 256000):
Vocabulary size of the Cohere model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`CohereModel`]
hidden_size (`int`, *optional*, defaults to 8192):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 22528):
Dimension of the MLP representations.
logit_scale (`float`, *optional*, defaults to 0.0625):
The scaling factor for the output logits.
num_hidden_layers (`int`, *optional*, defaults to 40):
Number of hidden layers in the Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 64):
Number of attention heads for each attention layer in the Transformer decoder.
num_key_value_heads (`int`, *optional*):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
`num_attention_heads`.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 8192):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the layer normalization.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
pad_token_id (`int`, *optional*, defaults to 0):
Padding token id.
bos_token_id (`int`, *optional*, defaults to 5):
Beginning of stream token id.
eos_token_id (`int`, *optional*, defaults to 255001):
End of stream token id.
tie_word_embeddings (`bool`, *optional*, defaults to `True`):
Whether to tie weight embeddings
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
accordingly.
Expected contents:
`rope_type` (`str`):
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
'llama3'], with 'default' being the original RoPE implementation.
`factor` (`float`, *optional*):
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
original maximum pre-trained length.
`original_max_position_embeddings` (`int`, *optional*):
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
pretraining.
`attention_factor` (`float`, *optional*):
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
computation. If unspecified, it defaults to value recommended by the implementation, using the
`factor` field to infer the suggested value.
`beta_fast` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
ramp function. If unspecified, it defaults to 32.
`beta_slow` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
ramp function. If unspecified, it defaults to 1.
`short_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`long_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`low_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
`high_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
sliding_window (`int`, *optional*, defaults to 4096):
Size of the sliding window attention context.
sliding_window_pattern (`int`, *optional*, defaults to 4):
Pattern for the sliding window attention.
cache_implementation (`str`, *optional*, defaults to `"hybrid"`): the cache type to be used with `generate`.

```python
>>> from transformers import Cohere2Model, Cohere2Config

>>> # Initializing a Cohere Nextmodel configuration
>>> configuration = Cohere2Config()

>>> # Initializing a model from the Cohere2 configuration
>>> model = Cohere2Model(configuration) # doctest: +SKIP

>>> # Accessing the model configuration
>>> configuration = model.config # doctest: +SKIP
```
"""

model_type = "cohere2"
keys_to_ignore_at_inference = ["past_key_values"]

def __init__(
self,
vocab_size=256000,
hidden_size=8192,
intermediate_size=22528,
logit_scale=0.0625,
num_hidden_layers=40,
num_attention_heads=64,
num_key_value_heads=None,
hidden_act="silu",
max_position_embeddings=8192,
initializer_range=0.02,
layer_norm_eps=1e-5,
use_cache=True,
pad_token_id=0,
bos_token_id=5,
eos_token_id=255001,
tie_word_embeddings=True,
rope_theta=10000.0,
rope_scaling=None,
attention_bias=False,
attention_dropout=0.0,
sliding_window=4096,
sliding_window_pattern=4,
cache_implementation="hybrid",
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.logit_scale = logit_scale
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads

# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads

self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout
self.sliding_window = sliding_window
self.sliding_window_pattern = sliding_window_pattern
# Need to specify head_dim in the config so it can be used in the attention forward functions
self.head_dim = hidden_size // num_attention_heads
self.cache_implementation = cache_implementation

# Validate the correctness of rotary position embeddings parameters
rope_config_validation(self)

super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)


__all__ = ["Cohere2Config"]
Loading