Skip to content

Commit

Permalink
[Bugfix] Fix Phi-3 BNB quantization with tensor parallel (#9948)
Browse files Browse the repository at this point in the history
Signed-off-by: Isotr0py <[email protected]>
  • Loading branch information
Isotr0py authored Nov 22, 2024
1 parent a111d01 commit b6374e0
Show file tree
Hide file tree
Showing 2 changed files with 56 additions and 6 deletions.
19 changes: 14 additions & 5 deletions vllm/model_executor/layers/linear.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
import itertools
from abc import abstractmethod
from typing import Dict, List, Optional, Tuple

Expand Down Expand Up @@ -41,12 +42,12 @@ def adjust_marlin_shard(param, shard_size, shard_offset):


def adjust_bitsandbytes_4bit_shard(param: Parameter,
qkv_offsets: Dict[str, Tuple[int, int]],
shard_offsets: Dict[str, Tuple[int, int]],
loaded_shard_id: str) -> Tuple[int, int]:
"""Adjust the quantization offsets and sizes for BitsAndBytes sharding."""

total, _ = qkv_offsets["total"]
orig_offset, orig_size = qkv_offsets[loaded_shard_id]
total, _ = shard_offsets["total"]
orig_offset, orig_size = shard_offsets[loaded_shard_id]

quantized_total = param.data.shape[0]
quantized_offset = orig_offset * quantized_total // total
Expand Down Expand Up @@ -499,9 +500,17 @@ def weight_loader(self,
# Special case for Marlin.
shard_size, shard_offset = adjust_marlin_shard(
param, shard_size, shard_offset)

if use_bitsandbytes_4bit:
shard_size = loaded_weight.shape[output_dim] // 2
shard_offset = shard_size * shard_id
index = list(itertools.accumulate([0] + self.output_sizes))
orig_offsets = {
str(i): (index[i], size)
for i, size in enumerate(self.output_sizes)
}
orig_offsets["total"] = (self.output_size, 0)
shard_size, shard_offset = adjust_bitsandbytes_4bit_shard(
param, orig_offsets, str(shard_id))

loaded_weight_shard = loaded_weight.narrow(
output_dim, shard_offset, shard_size)
self.weight_loader(param, loaded_weight_shard, shard_id)
Expand Down
43 changes: 42 additions & 1 deletion vllm/model_executor/model_loader/loader.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@
import fnmatch
import glob
import inspect
import itertools
import json
import math
import os
Expand All @@ -27,7 +28,9 @@
get_tensor_model_parallel_world_size)
from vllm.envs import VLLM_USE_MODELSCOPE
from vllm.logger import init_logger
from vllm.model_executor.layers.linear import (ReplicatedLinear,
from vllm.model_executor.layers.linear import (MergedColumnParallelLinear,
QKVParallelLinear,
ReplicatedLinear,
RowParallelLinear)
from vllm.model_executor.layers.quantization.base_config import (
QuantizeMethodBase)
Expand Down Expand Up @@ -936,6 +939,34 @@ def _unquantized_generator(self, hf_weights_files, use_safetensors,
end_index = total_size // tp_size * (tp_rank + 1)
weight_sub_tensor = weight_tensor[...,
start_index:end_index]
# Weights have fused on disk. In this case, we assume that the
# weight and module use same name.
elif any(
weight_name.startswith(module)
for module in self.maybe_fused_weights_modules):
# special case for fused weights
# get the size of each shard weight tensor
total_shard_sizes = next(
(sizes for module, sizes in
self.maybe_fused_weights_modules.items()
if weight_name.startswith(module)))
total_size = weight_tensor.size(0)
assert total_size == sum(total_shard_sizes)
# get the start/end index of each shard weight tensor
total_start_index = list(
itertools.accumulate([0] + total_shard_sizes))[:-1]
shard_weights_index = [
(idx + size // tp_size * tp_rank,
idx + size // tp_size * (tp_rank + 1))
for idx, size in zip(total_start_index,
total_shard_sizes)
]
# slice and reorder the weight tensor
weight_tensor = [
weight_tensor[start_index:end_index, ...]
for start_index, end_index in shard_weights_index
]
weight_sub_tensor = torch.cat(weight_tensor, dim=0)
# Shard by row
else:
total_size = weight_tensor.size(0)
Expand Down Expand Up @@ -985,12 +1016,22 @@ def _load_weights(self, model_config: ModelConfig,
else:
self.target_modules = self.default_target_modules

# Modules whose weights might have fused on disk
# we need their output_sizes to make shard in flight correctly with TP
self.maybe_fused_weights_modules: Dict[str, List[int]] = {}

for name, module in model.named_modules():
# Some modules like `ReplicatedLinear` should not have their weights
# sharded. The reason for implementing it this way is to avoid new
# static variable in the model implementation.
if isinstance(module, (ReplicatedLinear, )):
self.unsharded_weights_modules.append(name)
# `QKVParallelLinear` and `MergedColumnParallelLinear` might have
# fused weights on disk. We need to use the output sizes of these
# modules to shard the weights correctly.
elif isinstance(module,
(QKVParallelLinear, MergedColumnParallelLinear)):
self.maybe_fused_weights_modules[name] = module.output_sizes
# In TP, these weights are partitioned along the column
# dimension (dim=-1)
elif isinstance(module, (RowParallelLinear, )):
Expand Down

0 comments on commit b6374e0

Please sign in to comment.