Skip to content

Commit

Permalink
[Doc] Move examples into categories (#11840)
Browse files Browse the repository at this point in the history
Signed-off-by: Harry Mellor <[email protected]>
  • Loading branch information
hmellor authored Jan 8, 2025
1 parent 2a0596b commit aba8d6e
Show file tree
Hide file tree
Showing 116 changed files with 153 additions and 124 deletions.
2 changes: 1 addition & 1 deletion .buildkite/run-cpu-test.sh
Original file line number Diff line number Diff line change
Expand Up @@ -30,7 +30,7 @@ function cpu_tests() {
# offline inference
docker exec cpu-test-"$BUILDKITE_BUILD_NUMBER"-avx2-"$NUMA_NODE" bash -c "
set -e
python3 examples/offline_inference.py"
python3 examples/offline_inference/offline_inference.py"

# Run basic model test
docker exec cpu-test-"$BUILDKITE_BUILD_NUMBER"-"$NUMA_NODE" bash -c "
Expand Down
2 changes: 1 addition & 1 deletion .buildkite/run-gh200-test.sh
Original file line number Diff line number Diff line change
Expand Up @@ -24,5 +24,5 @@ remove_docker_container

# Run the image and test offline inference
docker run --name gh200-test --gpus=all --entrypoint="" gh200-test bash -c '
python3 examples/offline_inference.py
python3 examples/offline_inference/offline_inference.py
'
2 changes: 1 addition & 1 deletion .buildkite/run-hpu-test.sh
Original file line number Diff line number Diff line change
Expand Up @@ -13,4 +13,4 @@ trap remove_docker_container EXIT
remove_docker_container

# Run the image and launch offline inference
docker run --runtime=habana --name=hpu-test --network=host -e HABANA_VISIBLE_DEVICES=all -e VLLM_SKIP_WARMUP=true --entrypoint="" hpu-test-env python3 examples/offline_inference.py
docker run --runtime=habana --name=hpu-test --network=host -e HABANA_VISIBLE_DEVICES=all -e VLLM_SKIP_WARMUP=true --entrypoint="" hpu-test-env python3 examples/offline_inference/offline_inference.py
2 changes: 1 addition & 1 deletion .buildkite/run-neuron-test.sh
Original file line number Diff line number Diff line change
Expand Up @@ -51,4 +51,4 @@ docker run --rm -it --device=/dev/neuron0 --device=/dev/neuron1 --network host \
-e "NEURON_COMPILE_CACHE_URL=${NEURON_COMPILE_CACHE_MOUNT}" \
--name "${container_name}" \
${image_name} \
/bin/bash -c "python3 /workspace/vllm/examples/offline_inference_neuron.py"
/bin/bash -c "python3 /workspace/vllm/examples/offline_inference/offline_inference_neuron.py"
2 changes: 1 addition & 1 deletion .buildkite/run-openvino-test.sh
Original file line number Diff line number Diff line change
Expand Up @@ -13,4 +13,4 @@ trap remove_docker_container EXIT
remove_docker_container

# Run the image and launch offline inference
docker run --network host --env VLLM_OPENVINO_KVCACHE_SPACE=1 --name openvino-test openvino-test python3 /workspace/examples/offline_inference.py
docker run --network host --env VLLM_OPENVINO_KVCACHE_SPACE=1 --name openvino-test openvino-test python3 /workspace/examples/offline_inference/offline_inference.py
2 changes: 1 addition & 1 deletion .buildkite/run-tpu-test.sh
Original file line number Diff line number Diff line change
Expand Up @@ -14,4 +14,4 @@ remove_docker_container
# For HF_TOKEN.
source /etc/environment
# Run a simple end-to-end example.
docker run --privileged --net host --shm-size=16G -it -e "HF_TOKEN=$HF_TOKEN" --name tpu-test vllm-tpu /bin/bash -c "python3 -m pip install git+https://github.com/thuml/depyf.git && python3 -m pip install pytest && python3 -m pip install lm_eval[api]==0.4.4 && pytest -v -s /workspace/vllm/tests/entrypoints/openai/test_accuracy.py && pytest -v -s /workspace/vllm/tests/tpu/test_custom_dispatcher.py && python3 /workspace/vllm/tests/tpu/test_compilation.py && python3 /workspace/vllm/examples/offline_inference_tpu.py"
docker run --privileged --net host --shm-size=16G -it -e "HF_TOKEN=$HF_TOKEN" --name tpu-test vllm-tpu /bin/bash -c "python3 -m pip install git+https://github.com/thuml/depyf.git && python3 -m pip install pytest && python3 -m pip install lm_eval[api]==0.4.4 && pytest -v -s /workspace/vllm/tests/entrypoints/openai/test_accuracy.py && pytest -v -s /workspace/vllm/tests/tpu/test_custom_dispatcher.py && python3 /workspace/vllm/tests/tpu/test_compilation.py && python3 /workspace/vllm/examples/offline_inference/offline_inference_tpu.py"
4 changes: 2 additions & 2 deletions .buildkite/run-xpu-test.sh
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,6 @@ remove_docker_container

# Run the image and test offline inference/tensor parallel
docker run --name xpu-test --device /dev/dri -v /dev/dri/by-path:/dev/dri/by-path --entrypoint="" xpu-test sh -c '
python3 examples/offline_inference.py
python3 examples/offline_inference_cli.py -tp 2
python3 examples/offline_inference/offline_inference.py
python3 examples/offline_inference/offline_inference_cli.py -tp 2
'
26 changes: 13 additions & 13 deletions .buildkite/test-pipeline.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -187,19 +187,19 @@ steps:
- examples/
commands:
- pip install tensorizer # for tensorizer test
- python3 offline_inference.py
- python3 cpu_offload.py
- python3 offline_inference_chat.py
- python3 offline_inference_with_prefix.py
- python3 llm_engine_example.py
- python3 offline_inference_vision_language.py
- python3 offline_inference_vision_language_multi_image.py
- python3 tensorize_vllm_model.py --model facebook/opt-125m serialize --serialized-directory /tmp/ --suffix v1 && python3 tensorize_vllm_model.py --model facebook/opt-125m deserialize --path-to-tensors /tmp/vllm/facebook/opt-125m/v1/model.tensors
- python3 offline_inference_encoder_decoder.py
- python3 offline_inference_classification.py
- python3 offline_inference_embedding.py
- python3 offline_inference_scoring.py
- python3 offline_profile.py --model facebook/opt-125m run_num_steps --num-steps 2
- python3 offline_inference/offline_inference.py
- python3 offline_inference/cpu_offload.py
- python3 offline_inference/offline_inference_chat.py
- python3 offline_inference/offline_inference_with_prefix.py
- python3 offline_inference/llm_engine_example.py
- python3 offline_inference/offline_inference_vision_language.py
- python3 offline_inference/offline_inference_vision_language_multi_image.py
- python3 other/tensorize_vllm_model.py --model facebook/opt-125m serialize --serialized-directory /tmp/ --suffix v1 && python3 other/tensorize_vllm_model.py --model facebook/opt-125m deserialize --path-to-tensors /tmp/vllm/facebook/opt-125m/v1/model.tensors
- python3 offline_inference/offline_inference_encoder_decoder.py
- python3 offline_inference/offline_inference_classification.py
- python3 offline_inference/offline_inference_embedding.py
- python3 offline_inference/offline_inference_scoring.py
- python3 offline_inference/offline_profile.py --model facebook/opt-125m run_num_steps --num-steps 2

- label: Prefix Caching Test # 9min
mirror_hardwares: [amd]
Expand Down
4 changes: 2 additions & 2 deletions .github/workflows/lint-and-deploy.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,7 @@ jobs:
version: v3.10.1

- name: Run chart-testing (lint)
run: ct lint --target-branch ${{ github.event.repository.default_branch }} --chart-dirs examples/chart-helm --charts examples/chart-helm
run: ct lint --target-branch ${{ github.event.repository.default_branch }} --chart-dirs examples/online_serving/chart-helm --charts examples/online_serving/chart-helm

- name: Setup minio
run: |
Expand Down Expand Up @@ -64,7 +64,7 @@ jobs:
run: |
export AWS_ACCESS_KEY_ID=minioadmin
export AWS_SECRET_ACCESS_KEY=minioadmin
helm install --wait --wait-for-jobs --timeout 5m0s --debug --create-namespace --namespace=ns-vllm test-vllm examples/chart-helm -f examples/chart-helm/values.yaml --set secrets.s3endpoint=http://minio:9000 --set secrets.s3bucketname=testbucket --set secrets.s3accesskeyid=$AWS_ACCESS_KEY_ID --set secrets.s3accesskey=$AWS_SECRET_ACCESS_KEY --set resources.requests.cpu=1 --set resources.requests.memory=4Gi --set resources.limits.cpu=2 --set resources.limits.memory=5Gi --set image.env[0].name=VLLM_CPU_KVCACHE_SPACE --set image.env[1].name=VLLM_LOGGING_LEVEL --set-string image.env[0].value="1" --set-string image.env[1].value="DEBUG" --set-string extraInit.s3modelpath="opt-125m/" --set-string 'resources.limits.nvidia\.com/gpu=0' --set-string 'resources.requests.nvidia\.com/gpu=0' --set-string image.repository="vllm-cpu-env"
helm install --wait --wait-for-jobs --timeout 5m0s --debug --create-namespace --namespace=ns-vllm test-vllm examples/online_serving/chart-helm -f examples/online_serving/chart-helm/values.yaml --set secrets.s3endpoint=http://minio:9000 --set secrets.s3bucketname=testbucket --set secrets.s3accesskeyid=$AWS_ACCESS_KEY_ID --set secrets.s3accesskey=$AWS_SECRET_ACCESS_KEY --set resources.requests.cpu=1 --set resources.requests.memory=4Gi --set resources.limits.cpu=2 --set resources.limits.memory=5Gi --set image.env[0].name=VLLM_CPU_KVCACHE_SPACE --set image.env[1].name=VLLM_LOGGING_LEVEL --set-string image.env[0].value="1" --set-string image.env[1].value="DEBUG" --set-string extraInit.s3modelpath="opt-125m/" --set-string 'resources.limits.nvidia\.com/gpu=0' --set-string 'resources.requests.nvidia\.com/gpu=0' --set-string image.repository="vllm-cpu-env"
- name: curl test
run: |
Expand Down
2 changes: 1 addition & 1 deletion Dockerfile
Original file line number Diff line number Diff line change
Expand Up @@ -250,7 +250,7 @@ ENV VLLM_USAGE_SOURCE production-docker-image
# define sagemaker first, so it is not default from `docker build`
FROM vllm-openai-base AS vllm-sagemaker

COPY examples/sagemaker-entrypoint.sh .
COPY examples/online_serving/sagemaker-entrypoint.sh .
RUN chmod +x sagemaker-entrypoint.sh
ENTRYPOINT ["./sagemaker-entrypoint.sh"]

Expand Down
2 changes: 1 addition & 1 deletion docs/source/contributing/profiling/profiling_index.md
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,7 @@ Set the env variable VLLM_RPC_TIMEOUT to a big number before you start the serve

### Offline Inference

Refer to <gh-file:examples/offline_inference_with_profiler.py> for an example.
Refer to <gh-file:examples/offline_inference/offline_inference_with_profiler.py> for an example.

### OpenAI Server

Expand Down
4 changes: 2 additions & 2 deletions docs/source/deployment/frameworks/skypilot.md
Original file line number Diff line number Diff line change
Expand Up @@ -61,7 +61,7 @@ run: |
echo 'Starting gradio server...'
git clone https://github.com/vllm-project/vllm.git || true
python vllm/examples/gradio_openai_chatbot_webserver.py \
python vllm/examples/online_serving/gradio_openai_chatbot_webserver.py \
-m $MODEL_NAME \
--port 8811 \
--model-url http://localhost:8081/v1 \
Expand Down Expand Up @@ -321,7 +321,7 @@ run: |
echo 'Starting gradio server...'
git clone https://github.com/vllm-project/vllm.git || true
python vllm/examples/gradio_openai_chatbot_webserver.py \
python vllm/examples/online_serving/gradio_openai_chatbot_webserver.py \
-m $MODEL_NAME \
--port 8811 \
--model-url http://$ENDPOINT/v1 \
Expand Down
2 changes: 1 addition & 1 deletion docs/source/features/disagg_prefill.md
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,7 @@ Disaggregated prefill DOES NOT improve throughput.

## Usage example

Please refer to `examples/disaggregated_prefill.sh` for the example usage of disaggregated prefilling.
Please refer to `examples/online_serving/disaggregated_prefill.sh` for the example usage of disaggregated prefilling.

## Benchmarks

Expand Down
2 changes: 1 addition & 1 deletion docs/source/features/lora.md
Original file line number Diff line number Diff line change
Expand Up @@ -47,7 +47,7 @@ outputs = llm.generate(
)
```

Check out <gh-file:examples/multilora_inference.py> for an example of how to use LoRA adapters with the async engine and how to use more advanced configuration options.
Check out <gh-file:examples/offline_inference/multilora_inference.py> for an example of how to use LoRA adapters with the async engine and how to use more advanced configuration options.

## Serving LoRA Adapters

Expand Down
2 changes: 1 addition & 1 deletion docs/source/features/quantization/auto_awq.md
Original file line number Diff line number Diff line change
Expand Up @@ -47,7 +47,7 @@ print(f'Model is quantized and saved at "{quant_path}"')
To run an AWQ model with vLLM, you can use [TheBloke/Llama-2-7b-Chat-AWQ](https://huggingface.co/TheBloke/Llama-2-7b-Chat-AWQ) with the following command:

```console
$ python examples/llm_engine_example.py --model TheBloke/Llama-2-7b-Chat-AWQ --quantization awq
$ python examples/offline_inference/llm_engine_example.py --model TheBloke/Llama-2-7b-Chat-AWQ --quantization awq
```

AWQ models are also supported directly through the LLM entrypoint:
Expand Down
2 changes: 1 addition & 1 deletion docs/source/features/quantization/fp8_e4m3_kvcache.md
Original file line number Diff line number Diff line change
Expand Up @@ -28,7 +28,7 @@ Here is an example of how to enable this feature:

```python
# two float8_e4m3fn kv cache scaling factor files are provided under tests/fp8_kv, please refer to
# https://github.com/vllm-project/vllm/blob/main/examples/fp8/README.md to generate kv_cache_scales.json of your own.
# https://github.com/vllm-project/vllm/blob/main/examples/other/fp8/README.md to generate kv_cache_scales.json of your own.

from vllm import LLM, SamplingParams
sampling_params = SamplingParams(temperature=1.3, top_p=0.8)
Expand Down
4 changes: 2 additions & 2 deletions docs/source/features/structured_outputs.md
Original file line number Diff line number Diff line change
Expand Up @@ -131,7 +131,7 @@ completion = client.chat.completions.create(
print(completion.choices[0].message.content)
```

Full example: <gh-file:examples/openai_chat_completion_structured_outputs.py>
Full example: <gh-file:examples/online_serving/openai_chat_completion_structured_outputs.py>

## Experimental Automatic Parsing (OpenAI API)

Expand Down Expand Up @@ -257,4 +257,4 @@ outputs = llm.generate(
print(outputs[0].outputs[0].text)
```

Full example: <gh-file:examples/offline_inference_structured_outputs.py>
Full example: <gh-file:examples/offline_inference/offline_inference_structured_outputs.py>
45 changes: 25 additions & 20 deletions docs/source/generate_examples.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,7 @@
def fix_case(text: str) -> str:
subs = {
"api": "API",
"Cli": "CLI",
"cpu": "CPU",
"llm": "LLM",
"tpu": "TPU",
Expand Down Expand Up @@ -58,7 +59,7 @@ def generate(self) -> str:
content = f"# {self.title}\n\n{self.description}\n\n"
content += "```{toctree}\n"
content += f":caption: {self.caption}\n:maxdepth: {self.maxdepth}\n"
content += "\n".join(sorted(self.documents)) + "\n```\n"
content += "\n".join(self.documents) + "\n```\n"
return content


Expand Down Expand Up @@ -131,11 +132,14 @@ def generate(self) -> str:
ROOT_DIR)

content = f"Source <gh-file:{self.path.relative_to(ROOT_DIR)}>.\n\n"
if self.main_file.suffix == ".py":
content += f"# {self.title}\n\n"
include = "include" if self.main_file.suffix == ".md" else \
"literalinclude"
content += f":::{{{include}}} {make_relative(self.main_file)}\n:::\n\n"
if include == "literalinclude":
content += f"# {self.title}\n\n"
content += f":::{{{include}}} {make_relative(self.main_file)}\n"
if include == "literalinclude":
content += f":language: {self.main_file.suffix[1:]}\n"
content += ":::\n\n"

if not self.other_files:
return content
Expand Down Expand Up @@ -163,14 +167,16 @@ def generate_examples():
description=
"A collection of examples demonstrating usage of vLLM.\nAll documented examples are autogenerated using <gh-file:docs/source/generate_examples.py> from examples found in <gh-file:examples>.", # noqa: E501
caption="Examples",
maxdepth=1) # TODO change to 2 when examples start being categorised
maxdepth=2)
# Category indices stored in reverse order because they are inserted into
# examples_index.documents at index 0 in order
category_indices = {
"offline_inference":
"other":
Index(
path=EXAMPLE_DOC_DIR / "examples_offline_inference_index.md",
title="Offline Inference",
path=EXAMPLE_DOC_DIR / "examples_other_index.md",
title="Other",
description=
"Offline inference examples demonstrate how to use vLLM in an offline setting, where the model is queried for predictions in batches.", # noqa: E501
"Other examples that don't strongly fit into the online or offline serving categories.", # noqa: E501
caption="Examples",
),
"online_serving":
Expand All @@ -181,31 +187,30 @@ def generate_examples():
"Online serving examples demonstrate how to use vLLM in an online setting, where the model is queried for predictions in real-time.", # noqa: E501
caption="Examples",
),
"other":
"offline_inference":
Index(
path=EXAMPLE_DOC_DIR / "examples_other_index.md",
title="Other",
path=EXAMPLE_DOC_DIR / "examples_offline_inference_index.md",
title="Offline Inference",
description=
"Other examples that don't strongly fit into the online or offline serving categories.", # noqa: E501
"Offline inference examples demonstrate how to use vLLM in an offline setting, where the model is queried for predictions in batches.", # noqa: E501
caption="Examples",
),
}

examples = []
glob_patterns = ["*.py", "*.md", "*.sh"]
# Find categorised examples
for category in category_indices:
category_dir = EXAMPLE_DIR / category
py = category_dir.glob("*.py")
md = category_dir.glob("*.md")
for path in itertools.chain(py, md):
globs = [category_dir.glob(pattern) for pattern in glob_patterns]
for path in itertools.chain(*globs):
examples.append(Example(path, category))
# Find examples in subdirectories
for path in category_dir.glob("*/*.md"):
examples.append(Example(path.parent, category))
# Find uncategorised examples
py = EXAMPLE_DIR.glob("*.py")
md = EXAMPLE_DIR.glob("*.md")
for path in itertools.chain(py, md):
globs = [EXAMPLE_DIR.glob(pattern) for pattern in glob_patterns]
for path in itertools.chain(*globs):
examples.append(Example(path))
# Find examples in subdirectories
for path in EXAMPLE_DIR.glob("*/*.md"):
Expand All @@ -215,7 +220,7 @@ def generate_examples():
examples.append(Example(path.parent))

# Generate the example documentation
for example in examples:
for example in sorted(examples, key=lambda e: e.path.stem):
doc_path = EXAMPLE_DOC_DIR / f"{example.path.stem}.md"
with open(doc_path, "w+") as f:
f.write(example.generate())
Expand Down
4 changes: 2 additions & 2 deletions docs/source/getting_started/installation/cpu-x86.md
Original file line number Diff line number Diff line change
Expand Up @@ -95,7 +95,7 @@ $ VLLM_TARGET_DEVICE=cpu python setup.py install
$ sudo apt-get install libtcmalloc-minimal4 # install TCMalloc library
$ find / -name *libtcmalloc* # find the dynamic link library path
$ export LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libtcmalloc_minimal.so.4:$LD_PRELOAD # prepend the library to LD_PRELOAD
$ python examples/offline_inference.py # run vLLM
$ python examples/offline_inference/offline_inference.py # run vLLM
```

- When using the online serving, it is recommended to reserve 1-2 CPU cores for the serving framework to avoid CPU oversubscription. For example, on a platform with 32 physical CPU cores, reserving CPU 30 and 31 for the framework and using CPU 0-29 for OpenMP:
Expand Down Expand Up @@ -132,7 +132,7 @@ CPU NODE SOCKET CORE L1d:L1i:L2:L3 ONLINE MAXMHZ MINMHZ MHZ

# On this platform, it is recommend to only bind openMP threads on logical CPU cores 0-7 or 8-15
$ export VLLM_CPU_OMP_THREADS_BIND=0-7
$ python examples/offline_inference.py
$ python examples/offline_inference/offline_inference.py
```

- If using vLLM CPU backend on a multi-socket machine with NUMA, be aware to set CPU cores using `VLLM_CPU_OMP_THREADS_BIND` to avoid cross NUMA node memory access.
Expand Down
2 changes: 1 addition & 1 deletion docs/source/getting_started/installation/xpu.md
Original file line number Diff line number Diff line change
Expand Up @@ -71,4 +71,4 @@ $ --pipeline-parallel-size=2 \
$ -tp=8
```

By default, a ray instance will be launched automatically if no existing one is detected in system, with `num-gpus` equals to `parallel_config.world_size`. We recommend properly starting a ray cluster before execution, referring to the <gh-file:examples/run_cluster.sh> helper script.
By default, a ray instance will be launched automatically if no existing one is detected in system, with `num-gpus` equals to `parallel_config.world_size`. We recommend properly starting a ray cluster before execution, referring to the <gh-file:examples/online_serving/run_cluster.sh> helper script.
4 changes: 2 additions & 2 deletions docs/source/getting_started/quickstart.md
Original file line number Diff line number Diff line change
Expand Up @@ -31,7 +31,7 @@ For non-CUDA platforms, please refer [here](#installation-index) for specific in

## Offline Batched Inference

With vLLM installed, you can start generating texts for list of input prompts (i.e. offline batch inferencing). See the example script: <gh-file:examples/offline_inference.py>
With vLLM installed, you can start generating texts for list of input prompts (i.e. offline batch inferencing). See the example script: <gh-file:examples/offline_inference/offline_inference.py>

The first line of this example imports the classes {class}`~vllm.LLM` and {class}`~vllm.SamplingParams`:

Expand Down Expand Up @@ -133,7 +133,7 @@ completion = client.completions.create(model="Qwen/Qwen2.5-1.5B-Instruct",
print("Completion result:", completion)
```

A more detailed client example can be found here: <gh-file:examples/openai_completion_client.py>
A more detailed client example can be found here: <gh-file:examples/online_serving/openai_completion_client.py>

### OpenAI Chat Completions API with vLLM

Expand Down
Loading

0 comments on commit aba8d6e

Please sign in to comment.