Skip to content

Commit

Permalink
[Model][LoRA]LoRA support added for MolmoForCausalLM (#11439)
Browse files Browse the repository at this point in the history
Signed-off-by: Matthias Vogler <[email protected]>
Signed-off-by: Jee Jee Li <[email protected]>
Co-authored-by: Matthias Vogler <[email protected]>
Co-authored-by: Jee Jee Li <[email protected]>
  • Loading branch information
3 people authored Dec 31, 2024
1 parent ccb1aab commit a2a40bc
Show file tree
Hide file tree
Showing 2 changed files with 43 additions and 4 deletions.
2 changes: 1 addition & 1 deletion docs/source/models/supported_models.md
Original file line number Diff line number Diff line change
Expand Up @@ -666,7 +666,7 @@ See [this page](#generative-models) for more information on how to use generativ
- Molmo
- T + I
- `allenai/Molmo-7B-D-0924`, `allenai/Molmo-72B-0924`, etc.
-
- ✅︎
- ✅︎
- ✅︎
* - `NVLM_D_Model`
Expand Down
45 changes: 42 additions & 3 deletions vllm/model_executor/models/molmo.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,14 +36,15 @@
from vllm.model_executor.layers.vocab_parallel_embedding import (
ParallelLMHead, VocabParallelEmbedding)
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.model_executor.models.module_mapping import MultiModelKeys
from vllm.multimodal import MULTIMODAL_REGISTRY, MultiModalKwargs
from vllm.multimodal.inputs import NestedTensors, PlaceholderRange
from vllm.multimodal.utils import cached_get_tokenizer
from vllm.sequence import (VLLM_TOKEN_ID_ARRAY_TYPE, IntermediateTensors,
SequenceData)
from vllm.transformers_utils.processor import get_processor

from .interfaces import SupportsMultiModal, SupportsPP
from .interfaces import SupportsLoRA, SupportsMultiModal, SupportsPP
from .utils import (AutoWeightsLoader, WeightsMapper, is_pp_missing_parameter,
make_empty_intermediate_tensors_factory, make_layers,
maybe_prefix, merge_multimodal_embeddings)
Expand Down Expand Up @@ -1161,8 +1162,8 @@ def input_processor_for_molmo(ctx: InputContext, inputs: DecoderOnlyInputs):
@MULTIMODAL_REGISTRY.register_max_image_tokens(get_max_molmo_image_tokens)
@INPUT_REGISTRY.register_dummy_data(dummy_data_for_molmo)
@INPUT_REGISTRY.register_input_processor(input_processor_for_molmo)
class MolmoForCausalLM(nn.Module, SupportsMultiModal, SupportsPP):

class MolmoForCausalLM(nn.Module, SupportsMultiModal, SupportsPP,
SupportsLoRA):
hf_to_vllm_mapper = WeightsMapper(
orig_to_new_substr={
# vision backbone mapping
Expand Down Expand Up @@ -1191,6 +1192,32 @@ class MolmoForCausalLM(nn.Module, SupportsMultiModal, SupportsPP):
},
)

packed_modules_mapping = {
"qkv_proj": ["qkv_proj"],
"gate_up_proj": ["gate_up_proj"], # language model
"merged_linear": ["gate_proj", "up_proj"] # image_projector
}

# LoRA specific attributes
supported_lora_modules = [
# language model
"qkv_proj",
"o_proj",
"gate_up_proj",
"down_proj", # same name with image_projector
# vision tower
"wq",
"wk",
"wv",
"wo",
"w1",
"w2",
# image_projector
"merged_linear",
]
embedding_modules = {}
embedding_padding_modules = []

# BitandBytes specific attributes
bitsandbytes_stacked_params_mapping = {
"gate_proj": ("merged_linear", 0),
Expand All @@ -1202,8 +1229,10 @@ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
config = vllm_config.model_config.hf_config
quant_config = vllm_config.quant_config
multimodal_config = vllm_config.model_config.multimodal_config
lora_config = vllm_config.lora_config
self.config = config
self.multimodal_config = multimodal_config
self.lora_config = lora_config

vision_config = VisionBackboneConfig()
self.vision_backbone = MolmoVisionBackbone(config, vision_config,
Expand Down Expand Up @@ -1377,6 +1406,16 @@ def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
weights = _get_weights_with_merged_embedding(weights)
return loader.load_weights(weights, mapper=self.hf_to_vllm_mapper)

def get_mm_mapping(self) -> MultiModelKeys:
"""
Get the module prefix in multimodal models
"""
return MultiModelKeys.from_string_field(
language_model="model",
connector="vision_backbone.image_projector",
tower_model="vision_backbone",
)


def _get_weights_with_merged_embedding(
weights: Iterable[Tuple[str, torch.Tensor]]
Expand Down

0 comments on commit a2a40bc

Please sign in to comment.