-
-
Notifications
You must be signed in to change notification settings - Fork 5.2k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Showing
1 changed file
with
93 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,93 @@ | ||
import pytest | ||
import torch | ||
|
||
import vllm.envs as envs | ||
from vllm import LLM, SamplingParams | ||
from vllm.compilation.config import CompilationConfig | ||
from vllm.compilation.functionalization import FixFunctionalizationPass | ||
from vllm.compilation.fusion import (FusionPass, find_auto_fn, | ||
find_auto_fn_maybe) | ||
from vllm.compilation.inductor_pass import is_func | ||
from vllm.compilation.reshapes import RedundantReshapesPass | ||
|
||
from .backend import TestBackend | ||
|
||
# Init does pattern registration, which can only happen once | ||
config = CompilationConfig(enable_fusion=True) | ||
reshape_pass = RedundantReshapesPass(config) | ||
fusion_pass = FusionPass.instance(config) | ||
|
||
OPS_IN_MODEL = [ | ||
torch.ops._C.fused_add_rms_norm.default, | ||
torch.ops._C.silu_and_mul.default, | ||
] | ||
|
||
RMS_OP = torch.ops._C.rms_norm.default | ||
|
||
RMS_QUANT_OPS = { | ||
"static_fp8": [ | ||
torch.ops._C.rms_norm_static_fp8_quant.default, | ||
torch.ops._C.fused_add_rms_norm_static_fp8_quant.default | ||
], | ||
} | ||
|
||
prompts = [ | ||
"Hello, my name is", | ||
"The president of the United States is", | ||
"The capital of France is", | ||
"The future of AI is", | ||
] | ||
|
||
|
||
@pytest.mark.parametrize("model", | ||
["nm-testing/TinyLlama-1.1B-Chat-v1.0-FP8-e2e"]) | ||
@pytest.mark.parametrize("do_fusion", [True, False]) | ||
@pytest.mark.skipif(envs.VLLM_TARGET_DEVICE != "cuda", | ||
reason="Only test on CUDA") | ||
def test_fix_functionalization(model: str, do_fusion: bool): | ||
torch.set_default_device("cuda") | ||
|
||
passes = [reshape_pass, fusion_pass] if do_fusion else [reshape_pass] | ||
backend_func = TestBackend(*passes, FixFunctionalizationPass(config)) | ||
backend_no_func = TestBackend(*passes) | ||
|
||
# instantiate a full engine and manually compile the model 2x | ||
# (with and without FixFunctionalizationPass) | ||
llm = LLM(model=model, enforce_eager=True) | ||
model_runner = llm.llm_engine.model_executor.driver_worker.model_runner | ||
orig_model = model_runner.model | ||
# TODO mark inputs dynamic? (currently torch.compile is triggered 4x) | ||
# Can only do that by using the decorator but then we'd have to instantiate | ||
# 2 LLM instances. | ||
|
||
sampling_params = SamplingParams(temperature=0.0, top_p=1.0) | ||
model_runner.model = torch.compile(orig_model, | ||
fullgraph=True, | ||
backend=backend_func) | ||
gen_func = llm.generate(prompts, sampling_params) | ||
|
||
model_runner.model = torch.compile(orig_model, | ||
fullgraph=True, | ||
backend=backend_no_func) | ||
gen_no_func = llm.generate(prompts, sampling_params) | ||
|
||
for output_func, output_no_func in zip(gen_func, gen_no_func): | ||
assert output_func.outputs[0].text == output_no_func.outputs[0].text | ||
|
||
# OPS_IN_MODEL always appear. RMS_OP is fused away if we run fusion, | ||
# and replaced by fused quantized ops in RMS_QUANT_OPS. | ||
ops = OPS_IN_MODEL + (RMS_QUANT_OPS["static_fp8"] | ||
if do_fusion else [RMS_OP]) | ||
|
||
for op in ops: | ||
find_auto_fn(backend_no_func.graph_post_pass.nodes, op) | ||
assert find_auto_fn_maybe(backend_func.graph_post_pass.nodes, | ||
op) is None # noqa: E501 | ||
|
||
# make sure the ops were all de-functionalized | ||
found = dict() | ||
for node in backend_func.graph_post_pass.nodes: | ||
for op in ops: | ||
if is_func(node, op): | ||
found[op] = True | ||
assert all(found[op] for op in ops) |