Skip to content

Commit

Permalink
typos and more links
Browse files Browse the repository at this point in the history
  • Loading branch information
kkraune committed Jan 3, 2025
1 parent f528b16 commit 83ae108
Showing 1 changed file with 28 additions and 20 deletions.
48 changes: 28 additions & 20 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -55,7 +55,8 @@ is used to retrieve recommended content for a user.
This app also demonstrates using [parent-child](https://docs.vespa.ai/en/parent-child.html) relationships.

The [![logo](assets/vespa-logomark-tiny.png) Text Search Tutorial](text-search)
demonstrates traditional text search using BM25/Vespa nativeRank,
demonstrates traditional text search using
[BM25](https://docs.vespa.ai/en/reference/bm25.html)/[Vespa nativeRank](https://docs.vespa.ai/en/nativerank.html),
and is a good start into using the [MS Marco](https://huggingface.co/datasets/microsoft/ms_marco) dataset.


Expand All @@ -64,17 +65,16 @@ and is a good start into using the [MS Marco](https://huggingface.co/datasets/mi
There is a growing interest in AI-powered vector representations of unstructured multimodal data
and searching efficiently over these representations.
[![logo](assets/vespa-logomark-tiny.png) Managed Vector Search using Vespa Cloud](https://github.com/vespa-cloud/vector-search)
describes how to unlock the full potential of multimodal AI-powered vector representations using Vespa Cloud -
the industry-leading managed Vector Search Service.
describes how to unlock the full potential of multimodal AI-powered vector representations using Vespa Cloud.

The [![logo](assets/vespa-logomark-tiny.png) Simple Semantic Search](simple-semantic-search/)
application demonstrates indexed vector search using `HNSW`,
[![logo](assets/vespa-logomark-tiny.png) Simple Semantic Search](simple-semantic-search/)
demonstrates indexed vector search using [HNSW](https://docs.vespa.ai/en/reference/schema-reference.html#index-hnsw),
creating embedding vectors from a transformer language model inside Vespa, and hybrid text and semantic ranking.
This app also demonstrates using native Vespa embedders.

The [![logo](assets/vespa-logomark-tiny.png) Vespa Multi-Vector Indexing with HNSW](multi-vector-indexing/) /
[![logo](assets/vespa-logomark-tiny.png) Vespa Multi-Vector Indexing with HNSW](multi-vector-indexing/) and
[![logo](assets/vespa-logomark-tiny.png) Pyvespa: Multi-vector indexing with HNSW](https://pyvespa.readthedocs.io/en/latest/examples/multi-vector-indexing.html)
applications demonstrate how to index multiple vectors per document field for semantic search for longer documents.
demonstrate how to index multiple vectors per document field for semantic search for longer documents.

[![logo](assets/vespa-logomark-tiny.png) Vector Streaming Search](vector-streaming-search)
uses vector streaming search for naturally partitioned data, she the
Expand Down Expand Up @@ -108,7 +108,7 @@ with an optional [HNSW index](https://docs.vespa.ai/en/approximate-nn-hnsw.html)
The `int8` vector representation is stored on disk
using Vespa’s [paged](https://docs.vespa.ai/en/attributes.html#paged-attributes) option.

[![logo](assets/vespa-logomark-tiny.png) Pyvespa: Multilingual Hybrid Search with Cohere binary embeddings and Vespa](https://pyvespa.readthedocs.io/en/latest/examples/multilingual-multi-vector-reps-with-cohere-cloud.html).
[![logo](assets/vespa-logomark-tiny.png) Pyvespa: Multilingual Hybrid Search with Cohere binary embeddings and Vespa](https://pyvespa.readthedocs.io/en/latest/examples/multilingual-multi-vector-reps-with-cohere-cloud.html)
demonstrates:
* Building a multilingual search application over a sample of the German split of Wikipedia using
[binarized Cohere embeddings](https://huggingface.co/datasets/Cohere/wikipedia-2023-11-embed-multilingual-v3-int8-binary).
Expand All @@ -118,7 +118,7 @@ demonstrates:

[![logo](assets/vespa-logomark-tiny.png) Pyvespa: BGE-M3 - The Mother of all embedding models](https://pyvespa.readthedocs.io/en/latest/examples/mother-of-all-embedding-models-cloud.html)
demonstrates how to use the [BGE-M3](https://github.com/FlagOpen/FlagEmbedding/blob/master/research/BGE_M3/BGE_M3.pdf) embeddings
and represent all three embedding representations in Vespa!
and represent all three embedding representations in Vespa.
This code is inspired by the [BAAI/bge-m3 README](https://huggingface.co/BAAI/bge-m3).

[![logo](assets/vespa-logomark-tiny.png) Pyvespa: Evaluating retrieval with Snowflake arctic embed](https://pyvespa.readthedocs.io/en/latest/examples/evaluating-with-snowflake-arctic-embed.html)
Expand Down Expand Up @@ -152,10 +152,12 @@ This application has three versions of an end-to-end RAG application:
* Using an external LLM service to generate the final response.
* Using local LLM inference to generate the final response.
* Deploying to Vespa Cloud and using GPU accelerated LLM inference to generate the final response.
This includes using Vespa Cloud's [Secret Store](https://cloud.vespa.ai/en/security/secret-store.html#secret-management)
to save the OpenAI API key.

[![logo](assets/vespa-logomark-tiny.png) Pyvespa: Visual PDF RAG with Vespa - ColPali demo application](https://pyvespa.readthedocs.io/en/latest/examples/visual_pdf_rag_with_vespa_colpali_cloud.html)
is an end-to-end demo application for visual retrieval of PDF pages using Vespa, including a frontend web application.
Use [vespa-engine-colpali-vespa-visual-retrieval.hf.space](https://vespa-engine-colpali-vespa-visual-retrieval.hf.space/) for a live demo.
is an end-to-end demo application for visual retrieval of PDF pages, including a frontend web application -
try [vespa-engine-colpali-vespa-visual-retrieval.hf.space](https://vespa-engine-colpali-vespa-visual-retrieval.hf.space/) for a live demo.
The main goal of the demo is to make it easy to create your own PDF Enterprise Search application using Vespa!

[![logo](assets/vespa-logomark-tiny.png) Pyvespa: Building cost-efficient retrieval-augmented personal AI assistants](https://pyvespa.readthedocs.io/en/latest/examples/scaling-personal-ai-assistants-with-streaming-mode-cloud.html)
Expand All @@ -174,7 +176,7 @@ which handles the ColBERT embedding process with no custom code.



## Visual search
## Visual Search
[![logo](assets/vespa-logomark-tiny.png) Pyvespa: Vespa 🤝 ColPali: Efficient Document Retrieval with Vision Language Models](https://pyvespa.readthedocs.io/en/latest/examples/colpali-document-retrieval-vision-language-models-cloud.html)
demonstrates how to retrieve PDF pages using the embeddings generated by the [ColPali](https://huggingface.co/vidore/colpali) model.
ColPali is a powerful Vision Language Model (VLM) that can generate embeddings for images and text.
Expand Down Expand Up @@ -203,7 +205,7 @@ and demonstrates use of the [ColQWen2](https://huggingface.co/vidore/colqwen2-v0
With Vespa’s phased ranking capabilities,
doing cross-encoder inference for a subset of documents at a later stage in the ranking pipeline
can be a good trade-off between ranking performance and latency.
[![logo](assets/vespa-logomark-tiny.png) Pyvespa: Using Mixedbread.ai cross-encoder for reranking in Vespa.ai](https://pyvespa.readthedocs.io/en/latest/examples/cross-encoders-for-global-reranking.html),
[![logo](assets/vespa-logomark-tiny.png) Pyvespa: Using Mixedbread.ai cross-encoder for reranking in Vespa.ai](https://pyvespa.readthedocs.io/en/latest/examples/cross-encoders-for-global-reranking.html)
shows how to use the [Mixedbread.ai](https://www.mixedbread.ai/)
cross-encoder for [global-phase reranking](https://docs.vespa.ai/en/reference/schema-reference.html#using-a-global-phase-expression) in Vespa.

Expand All @@ -222,11 +224,12 @@ This uses 32 nearestNeighbor operators in the same query, each finding 100 neare
Then the results are re-ranked using the full-blown MaxSim calculation.

ColBERT token-level embeddings:
* The semantic search application [![logo](assets/vespa-logomark-tiny.png) Simple hybrid search with ColBERT](colbert)
* [![logo](assets/vespa-logomark-tiny.png) Simple hybrid search with ColBERT](colbert)
uses a single vector embedding model for retrieval and ColBERT (multi-token vector representation) for re-ranking.
The app demonstrates the [colbert-embedder](https://docs.vespa.ai/en/embedding.html#colbert-embedder)
This semantic search application demonstrates the [colbert-embedder](https://docs.vespa.ai/en/embedding.html#colbert-embedder)
and the tensor expressions for [ColBERT MaxSim](https://docs.vespa.ai/playground/#N4KABGBEBmkFxgNrgmUrWQPYAd5QGNIAaFDSPBdDTAF30gGJGwA1AUwGccBDMAYSwAbAEIBRAEoAVMAFkeADwDKASwC2YKewB2nLACcwYhTn1dOKrNrAAFITwCeAc31YArtoAmAHW2+pABYqnGA49s6uHp5g7Ao8amHsYE5uKp5cYFHs+py0PF4q2k5gWNBgtAFJHNx8tDp6hrGm5pa65QE8tGDqiWo6XRVJ8srqYBZqKvb6KrQOmZzs0YUCwuLSAHRgAOpJ6WpWufqdSYPd2nX6fZ4qx2N1OJy+hQBuws+LZ+1JBDxCBG72WitTibXy+JTsJK-PRfJAEYQAI2ytAAtOw1EjPOl9ABdAAUAVotAecAA9KTPFgCCD3jV1jwVKSdEyMYtrkV1oS1EJGPChEj9Kj0ZjsQBKMD5aKIPkCrqceKJCU4MIqH5Aqz4wnEzhk0lOGYBNwI9bwtSk2m8NFFQrsUnyhJCdgonjKzik2hmW1qHi5bKkmXI0WgvzaACE0sRyLA3oU401RJJ5KOAHd1vqKka3At9PDzv0TVgzbl8tADJ4UdA3LQ3GZPJ0eKTBKJJFJSd7ChSqW71DwnFx-ZHBaVoKqbkJ1jgiqKwdodmAOu9ysmsNGVAoPnVdAYQhVOmAzM0FudYU21jJ3gRaAZ9+xD-1OsCSmUAI5ubJzC9XnJgPEAKl-r7vniz60KK-7ipKYCUv8fTHp+24-v+nQeioCJVuweIBoKYG-tOIaBOwcwIlgFTzjwi6nPaSSFOk67RHi6S6Ow4rXLBFhWGA2jxEk-4KP+xASl4YDJkkWYnMuUHqPUj6loYCJmM8MwOMGvgomAAAGm4NMBtDAAAvgJCiIAATDiorqbCWFdIB+hzFp16zDg7CqRp9n6AxukGWARmmeZlmDl00FuLBAz1A5DhOWAM7GGE+QPhxsmwlxVzlGFhisdJBxRdoakAbQv4Sgi8nsIp8XWIlNl2dkGgub+nj5YVxWleq5UOZUUFUsF-SpZc2W5XxsI0bEHwMfUzGSWxrTCQaS4rhlujAjOABi175GcHpYJ4biXlNV5sFwvCpVuOQzi5iBaMd62uFtO0cSkaTsPG2q6tBNIHTw9KMsybkomJ+govd6ScrQ3J4Wp51paE0wTECi6Vtot26E9iadtS6wWh9DJMtopJmNA2Q6AQtpHNoADWhROGiJhmJw7G6MD3KMKY6gzCo7wVh4iOcGDSAXQ0nFWCizMw2zSTw1zyM6uSr3o+9n3Y7j7D42YCPE-k5NFFTh50yCXI8togvC6z7Piy13NnSIQhYE4CCCAkVYU9NpFuSEyzVLwku6giVtOLLdJY6aOAO5ryYGiiLuknh-jtaWQhW6HRRQUrNo7u1VlgJVgnREFIVHQ0IKQGQqB6UXBlF9Q5C4Aw7AkEXEAUPgFc0JA2gMJVOmirXNCYDXCCQG5AA80BW50AB8On6YZJlmXAwBgAADAgiDz8QACMOICavcCIKvxCmQJADM28ACzEAArDiemF93JcYGXGBN-XVd9zXpDdw3VB15grd98h0xoXUTCAVO5v27lAXuUBB7DywGPDyk9vLT1FLPReiAD7EGPhvMAW9EBn2IAANkwcZbeAB2YgAAOS+18aC32LqAiAj8oDP0IF3ZulA0Bf3rvQPuzAWA2GyLJCYidKTEmuttWgIQsDvEMJRDotYJqZWsAoZaKgchdBEknfYugPS3CaDTCwidTjCKhptMRIQkS0BEjoCUcdYSZwuBoeC35IK-CELCHO3V7FgEcSCbK0ckhG1hkkA8NN7wtSfLCWO8dHa6JaBxYIGl1LqVrNtDC7cQLigKn-VC6EgH8kDAJTgwVDLmUSTOQI8SYm0ymjTAE4jPh8G0OwZMedrylFhI5JImk0pwIMiBfSflQ7O3akY0wJjLxjHhDTMA5jLHWBcbYt8tkvHsEvAhZxNj3FwRWV+AuX8aEQHvqgBh2A2GQFfl-D+7CwFQB-lAYRoybriJYe-CBkBClqDxBnRZDgO5gEyUSf+OSrKimKVQu+pc6FXObkwyARBIX1zYQwzhDAeFgCWjRR2pwYwTIMGLVaNi7HVRCB3GcWwZrzMMSRB5piwA-D+ACY4ngBLqOTPkAYK4RxCSxYoHF0whGdVzo4gpK51HJKJiUKRsJ-z1X-PIhaVhfBZkdupGMFkfSwl7C4dgThOjXlNq0dYYLi4QvLhcmF5z36Io4TchgYr2AAH0YzPObq8u1DEqWiMvJwASMYBL1U7nsk1D8zWnLhRcq11z+4ouYGAJQwVwnYs4JMjIiV5mEsuI8bQBEwCct+HcW8mw5wLjxVEWEibJmO02aFXqSbcWhGyF898PU1CbGzbm1xvocDdB3Cud5XwFjlBXFgBEeRlinFPC2OQihVAaFrWYQ1ga76QuOea51CLG7Wpbgwd59rSj2pAmunu27gp4jtY6xQAab5BqOSGhgYbLUbsjVwqAMabA8COC4F0AQwCOneK44YM7fATukN26ZPoPgcT4ITTaDapAk04AIht+x0iuMGd+vgQgWZ1GiLmOoCg5TsEAqrH9OgnCkTxGfVexkQVjBXHtYJXBupWyKA23DsRxECSsEkRpiwe31v0AI2lhoyYU3WGUlcDGjxdF4B+o4OAAjeuEtRc4nqoScSadGF0Tls5SXldYX8OACocUpTBbqknQmtDgDORJXTjp4hwPA+q8CfJmRs6SmaFiVzemVBuNKin1E-GsAbLozG+yGDErCTgAQDChUugIvcYkljWFODwYii5YgKkdD4ttwgokGMhukTlrMOIdFTkkKiXjfhvhCIlGTvY5PfvnhKMrMQ4gOihGl9gAlBjWHUTwLEgkSKVEMHVz98mF1XqXaa9+q74VQAjWArdv8AXZMAVZe1o2Gvc0PfXV5UCR60HHg5ryTmvIuaQWgXwwAcBwBXlBWgt3DK3b0nANBV2bt3fqo97ycBV4vdPu977X3d4-fni93BgPPsPZBwoX7L28HEEh36h7xkntg7gKQpH924Co5+39uAZDEchmu795H33Yfo5XoDkHX27uw-x7vanZOYfPbgAATiJyTmn0OnsM8Z9oLnZPccU5e6jpn2Phdw4J74K+i7aHTehaGw9lykWQOjSweQ2g5gjM9XUspMdctYATsUJyAmDBqBazrsZXQ6X-EBFNRKMj30fHmnTP5v4+K-hUlmoIIQalCDqcsPgB8USu9aHm7z2mWmGDaacDprlunHeR8AGjfS9IDPJTYyl0nde8pTfi1xm2v2KbTd85tIR1muKreXib1Dr30NvS-ZXC3363MgPsMw9r7m684Dt8Bx6PmNtsr8-5KEAEYXW0X+T3NiAKEvXXqbwaZtK7myrzdz6mAxokIsFJJRTdlX11Y0VO-xUIjsu1ctBhK0Co8dVfjQ+qq9Ugqb0I776tfqNQc+vULK6nItawx9RbNvM9eqPvM5W1E-DCDvB1bva3RTX1e7efcFRfG9ZfO9ZvQA9+DfVFONDQPaTlaICldqADUYOdDIF-KfAIaOeJW3BlOoFrPtWPdqdNC3VtX3UDHrWEEg2dZNHNa8EqJtSg2vZA+XJfRXauDAz+SNYAyA-degObXbCAm6DCEA2gApIpDOUCT-MAfZHQ5dRvZhVfFvZuDfAiXrb4NaczY8EzLqY8X9dgDtXg9VblBQdQeNJg-xN-Mbb9Mg3ZSbUQ1A8QpvIwzA5uNvGMGwMA11SA09WQkCH1RQASHAJA41EQnEEAPSIAA).
It also features reciprocal rank fusion to fuse different rankings.
It also features [reciprocal rank fusion](https://docs.vespa.ai/en/phased-ranking.html#cross-hit-normalization-including-reciprocal-rank-fusion)
to fuse different rankings.
* [![logo](assets/vespa-logomark-tiny.png) Long-Context ColBERT](colbert-long)
demonstrates Long-Context ColBERT (multi-token vector representation) with extended context windows for long-document retrieval,
as announced in [Vespa Long-Context ColBERT](https://blog.vespa.ai/announcing-long-context-colbert-in-vespa/).
Expand Down Expand Up @@ -281,7 +284,7 @@ to test feeding using [Vespa Cloud](https://vespa.ai/free-trial/).
demonstrates billion-scale image search using a [CLIP](https://github.com/openai/CLIP) model
exported in [ONNX](https://onnx.ai/)-format for retrieval.
It features separation of compute from storage and query-time vector similarity de-duping.
Is uses PCA to reduce from 768 dimensions to 128 dimensions.
It uses PCA to reduce from 768 to 128 dimensions.


### State-of-the-art Text Ranking
Expand All @@ -298,8 +301,8 @@ This use case bundles a frontend application.
It demonstrates building next generation E-commerce Search using Vespa,
and is a good intro into using the Vespa Cloud [CI/CD tests](https://cloud.vespa.ai/en/automated-deployments#system-tests).

See also [![logo](assets/vespa-logomark-tiny.png) Vespa Product Ranking](commerce-product-ranking/) for using
learning-to-rank (LTR) techniques (including [XGBoost](https://xgboost.readthedocs.io/) and [LightGBM](https://lightgbm.readthedocs.io/))
Also try [![logo](assets/vespa-logomark-tiny.png) Vespa Product Ranking](commerce-product-ranking/) for using
learning-to-rank (LTR) techniques (using [XGBoost](https://xgboost.readthedocs.io/) and [LightGBM](https://lightgbm.readthedocs.io/))
for improving product search ranking.


Expand All @@ -314,7 +317,10 @@ It also demonstrates search suggestions (query auto-completion).
using Vespa as a stateless ML model inference server
where Vespa takes care of distributing ML models to multiple serving containers,
offering horizontal scaling and safe deployment.
It features model versioning and feature processing pipeline.
It features model versioning and a feature processing pipeline,
as well as using custom code in [Searchers](https://docs.vespa.ai/en/searcher-development.html),
[Document Processors](https://docs.vespa.ai/en/document-processing.html?mode=cloud) and
[Request Handlers](https://docs.vespa.ai/en/jdisc/developing-request-handlers.html).


### Vespa Documentation Search
Expand All @@ -325,6 +331,8 @@ This sample app is a good start for [automated deployments](https://cloud.vespa.
as it has system, staging and production test examples.
It uses the [Document API](https://docs.vespa.ai/en/document-api-guide.html)
both for regular PUT operations but also for UPDATE with _create-if-nonexistent_.
It also has [Vespa Components](https://github.com/vespa-cloud/vespa-documentation-search/tree/main/src/main/java/ai/vespa/cloud/docsearch)
for custom code.


### CORD-19 Search
Expand Down

0 comments on commit 83ae108

Please sign in to comment.