-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'jun_devel' of https://github.com/usc-isi-i2/dsbox-primi…
- Loading branch information
Showing
46 changed files
with
215,171 additions
and
636 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,15 @@ | ||
## Dsbox Primitive Unit Test | ||
#### Test pipeline | ||
How To add more testing pipeline (e.g. for new primitive): | ||
1. In `library.py`, following the existed format (like `DefaultClassificationTemplate`) to create a new `Template` class. | ||
2. If the added new pipeline is for new `runType` (you can also check it to ensure). Add the corresponding mapping In dict `DATASET_MAPPER` at line 416 on file `template.py`, follow the format. Ensure it is correct, otherwise the system would failed on finding correct dataset to run. | ||
3. ~~Go to `generate-pipelines-json.py` and add the new class for the import (line 8) part.~~ The system should now import all templates. | ||
4. Add it to `TEMPLATE_LIST` on `generate-pipelines-json.py`. | ||
5. Then, the unit test system will automatically run the new template and generate corresponding `pipeline.json` file that can used to upload as sample pipeline. | ||
|
||
#### primitives that do not have pipelines now | ||
1. data preprocessing: `label_encoder`, `greedy_imputation`, `multitable_featurization` | ||
2. `column_fold` and `unfold` | ||
3. Video classification: `LSTM`, `inceptionV3`, | ||
4. concat related: `horizontal concat`, | ||
5. Dataset splitter: `splitter` |
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,10 +1,19 @@ | ||
#!/bin/bash | ||
pip install -e git+https://gitlab.com/datadrivendiscovery/d3m@a8af7585fdd85e2218ca88b257bb0ec71adabfb3#egg=d3m --progress-bar off | ||
pip install -e git+https://gitlab.com/datadrivendiscovery/common-primitives.git@5c43e65d306a4f36d53db2fb497c9869e2fb7294#egg=common_primitives --progress-bar off | ||
pip install -e git+https://gitlab.com/datadrivendiscovery/sklearn-wrap@dist#egg=sklearn-wrap --progress-bar off | ||
pip install -e git+https://gitlab.com/datadrivendiscovery/d3m@be853095932d4a94bea45da61192a926bfcb1dbd#egg=d3m --progress-bar off | ||
pip install -e git+https://gitlab.com/datadrivendiscovery/common-primitives.git@15e84bff9b310068c071d79b255f3314df183466#egg=common_primitives --progress-bar off | ||
pip install -e git+https://gitlab.com/datadrivendiscovery/sklearn-wrap@4a2cfd1dc749bb13ce807b2bf2436a45cd49c695#egg=sklearn-wrap --progress-bar off | ||
pip uninstall -y tensorflow-gpu | ||
export LD_LIBRARY_PATH="$HOME/miniconda/envs/ta1-test-env/lib:$LD_LIBRARY_PATH" | ||
pip install tensorflow==1.12.0 | ||
pip install tensorflow==2.0.0 | ||
pip install -e . --progress-bar off | ||
pip install -e git+https://github.com/brekelma/dsbox_corex@master#egg=dsbox_corex --progress-bar off | ||
pip install -e git+https://github.com/brekelma/dsbox_corex@5ebdd6ee66aa5ddb48e3c97d98145586d95c9c1e#egg=dsbox_corex --progress-bar off | ||
pip list | ||
wget https://github.com/fchollet/deep-learning-models/releases/download/v0.2/resnet50_weights_tf_dim_ordering_tf_kernels.h5 --no-verbose | ||
mv resnet50_weights_tf_dim_ordering_tf_kernels.h5 bdc6c9f787f9f51dffd50d895f86e469cc0eb8ba95fd61f0801b1a264acb4819 | ||
wget https://github.com/fchollet/deep-learning-models/releases/download/v0.1/vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5 --no-verbose | ||
mv vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5 bfe5187d0a272bed55ba430631598124cff8e880b98d38c9e56c8d66032abdc1 | ||
wget https://pjreddie.com/media/files/yolov3.weights --no-verbose | ||
mv yolov3.weights 523e4e69e1d015393a1b0a441cef1d9c7659e3eb2d7e15f793f060a21b32f297 | ||
wget https://github.com/keras-team/keras-applications/releases/download/resnet/resnet50_weights_tf_dim_ordering_tf_kernels.h5 --no-verbose | ||
mv resnet50_weights_tf_dim_ordering_tf_kernels.h5 7011d39ea4f61f4ddb8da99c4addf3fae4209bfda7828adb4698b16283258fbe | ||
ls -l |
Binary file not shown.
This file was deleted.
Oops, something went wrong.
157 changes: 157 additions & 0 deletions
157
.travis/pre_ran_pipelines/LL1_tidy/pp_object_detection.json
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,157 @@ | ||
{ | ||
"id": "dd2d98ed-5d94-4245-a0c9-0861ed7bc177", | ||
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json", | ||
"created": "2020-01-24T01:01:01.853055Z", | ||
"inputs": [ | ||
{ | ||
"name": "input dataset" | ||
} | ||
], | ||
"outputs": [ | ||
{ | ||
"data": "steps.4.produce", | ||
"name": "predictions of input dataset" | ||
} | ||
], | ||
"steps": [ | ||
{ | ||
"type": "PRIMITIVE", | ||
"primitive": { | ||
"id": "f31f8c1f-d1c5-43e5-a4b2-2ae4a761ef2e", | ||
"version": "0.2.0", | ||
"python_path": "d3m.primitives.data_transformation.denormalize.Common", | ||
"name": "Denormalize datasets", | ||
"digest": "5ac405757790f53ed8bfdf782ea5805c3d115dca1df1d1479c6478c6d3038340" | ||
}, | ||
"arguments": { | ||
"inputs": { | ||
"type": "CONTAINER", | ||
"data": "inputs.0" | ||
} | ||
}, | ||
"outputs": [ | ||
{ | ||
"id": "produce" | ||
} | ||
] | ||
}, | ||
{ | ||
"type": "PRIMITIVE", | ||
"primitive": { | ||
"id": "4b42ce1e-9b98-4a25-b68e-fad13311eb65", | ||
"version": "0.3.0", | ||
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common", | ||
"name": "Extract a DataFrame from a Dataset", | ||
"digest": "422744651afd5995d029a227a1dd7b1696038816b7eb9601f37d661757812aee" | ||
}, | ||
"arguments": { | ||
"inputs": { | ||
"type": "CONTAINER", | ||
"data": "steps.0.produce" | ||
} | ||
}, | ||
"outputs": [ | ||
{ | ||
"id": "produce" | ||
} | ||
] | ||
}, | ||
{ | ||
"type": "PRIMITIVE", | ||
"primitive": { | ||
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1", | ||
"version": "0.3.0", | ||
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.Common", | ||
"name": "Extracts columns by semantic type", | ||
"digest": "30cceb9812b430d6550d54766b4f674b68b92531fc2ad63f56818ea002399c13" | ||
}, | ||
"arguments": { | ||
"inputs": { | ||
"type": "CONTAINER", | ||
"data": "steps.1.produce" | ||
} | ||
}, | ||
"outputs": [ | ||
{ | ||
"id": "produce" | ||
} | ||
], | ||
"hyperparams": { | ||
"semantic_types": { | ||
"type": "VALUE", | ||
"data": [ | ||
"https://metadata.datadrivendiscovery.org/types/PrimaryMultiKey", | ||
"https://metadata.datadrivendiscovery.org/types/FileName" | ||
] | ||
} | ||
} | ||
}, | ||
{ | ||
"type": "PRIMITIVE", | ||
"primitive": { | ||
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1", | ||
"version": "0.3.0", | ||
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.Common", | ||
"name": "Extracts columns by semantic type", | ||
"digest": "30cceb9812b430d6550d54766b4f674b68b92531fc2ad63f56818ea002399c13" | ||
}, | ||
"arguments": { | ||
"inputs": { | ||
"type": "CONTAINER", | ||
"data": "steps.1.produce" | ||
} | ||
}, | ||
"outputs": [ | ||
{ | ||
"id": "produce" | ||
} | ||
], | ||
"hyperparams": { | ||
"semantic_types": { | ||
"type": "VALUE", | ||
"data": [ | ||
"https://metadata.datadrivendiscovery.org/types/TrueTarget" | ||
] | ||
} | ||
} | ||
}, | ||
{ | ||
"type": "PRIMITIVE", | ||
"primitive": { | ||
"id": "dsbox-featurizer-object-detection-yolo", | ||
"version": "1.5.3", | ||
"python_path": "d3m.primitives.feature_extraction.yolo.DSBOX", | ||
"name": "DSBox Object Detection YOLO", | ||
"digest": "2db0c52b7bd9ae94ccfdae549f07a05b936113e59fd07a9ecc4318b5fc3067a2" | ||
}, | ||
"arguments": { | ||
"inputs": { | ||
"type": "CONTAINER", | ||
"data": "steps.2.produce" | ||
}, | ||
"outputs": { | ||
"type": "CONTAINER", | ||
"data": "steps.3.produce" | ||
} | ||
}, | ||
"outputs": [ | ||
{ | ||
"id": "produce" | ||
} | ||
], | ||
"hyperparams": { | ||
"epochs": { | ||
"type": "VALUE", | ||
"data": 200 | ||
}, | ||
"use_fitted_weight": { | ||
"type": "VALUE", | ||
"data": false | ||
} | ||
} | ||
} | ||
], | ||
"name": "DefaultObjectDetectionTemplate:140186136032384", | ||
"description": "", | ||
"digest": "862956d95719977f9b0cc485a8742eabb5b2a355b775f9214ea3037281c4d35f" | ||
} |
Oops, something went wrong.