Skip to content

Latest commit

 

History

History
17 lines (11 loc) · 467 Bytes

README.md

File metadata and controls

17 lines (11 loc) · 467 Bytes

Sentence Embedding

A python wrapper for embedding short texts or sentences using sent2vec, which draws on FastText.

To embed a list of strings documents, use:

from nk_sent2vec import Sent2Vec 

vectorizer = Sent2Vec(path = '/root/models/torontobooks_unigrams.bin')

print(vectorizer.embed_sentences(sentences=documents))

Testing

Tests can be run using pytest -s tests

Also see makefile for default commands