A python wrapper for embedding text documents using sent2vec, which draws on FastText.
To embed a list of strings documents
, use:
from nk_sent2vec import Sent2Vec
vectorizer = Sent2Vec(path = '/home/nk-sent2vec/models/torontobooks_unigrams.bin')
print(vectorizer.embed_sentences(sentences=[documents]))
Tests can be run using nosetests -s