Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

remove duplicates #38

Merged
merged 2 commits into from
Oct 9, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion DESCRIPTION
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
Package: LightLogR
Title: Process Data from Wearable Light Loggers and Optical Radiation Dosimeters
Version: 0.4.1
Version: 0.4.2
Authors@R: c(
person("Johannes", "Zauner",
email = "[email protected]", role = c("aut", "cre"),
Expand Down Expand Up @@ -32,6 +32,7 @@ Imports:
ggsci,
ggtext,
hms,
janitor,
lubridate,
magrittr,
pkgload,
Expand Down
4 changes: 4 additions & 0 deletions NEWS.md
Original file line number Diff line number Diff line change
@@ -1,3 +1,7 @@
# LightLogR 0.4.2

* `import` functions will now give a warning message about identical observations in the provided data files, stop the import process and return a tibble with the duplicate rows. Through the `remove_duplicates` parameter, the user can decide to automatically remove these duplicates during import. **Note: identical observations refers to identical rows when disregarding the filename.**

# LightLogR 0.4.1

* added support for OcuWEAR devices
Expand Down
2 changes: 1 addition & 1 deletion R/aaa.r
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
Time <- mEDI <- Time.data <- Datetime <- timestamp <- tz <- Day.data <- `DATE/TIME` <- n <- Datetime.rounded <- id <- sleep.colname.string <- file.name <- Interval <- original.datapoints.fleeting <- MEDI <- State.Brown <- Reference <- Reference.check <- Id <- Start.date.shift <- data <- Shift <- `MELANOPIC EDI` <- State <- group <- End <- Start <- Quant.x <- Quant.y <- is.implicit <- group.indices <- Id2 <- gap.id <- start <- end <- path <- auto.id <- n_max <- manual.id <- silent <- Light <- Day <- N <- is_missing <- Hour <- .change <- dst_start <- .dst <- .dst2 <- dst_adjustment <- auto.plot <- group.1 <- group.2 <- group.indices2 <- cluster_start <- cluster_end <- row_idx <- is_cluster <- cluster_idx <- is_pulse <- pulse_idx <- light <- time <- level <- duration <- mean_duration <- onset <- midpoint <- offset <- mean_onset <- mean_midpoint <- mean_offset <- Date.data <- print_n <- NULL
Time <- mEDI <- Time.data <- Datetime <- timestamp <- tz <- Day.data <- `DATE/TIME` <- n <- Datetime.rounded <- id <- sleep.colname.string <- file.name <- Interval <- original.datapoints.fleeting <- MEDI <- State.Brown <- Reference <- Reference.check <- Id <- Start.date.shift <- data <- Shift <- `MELANOPIC EDI` <- State <- group <- End <- Start <- Quant.x <- Quant.y <- is.implicit <- group.indices <- Id2 <- gap.id <- start <- end <- path <- auto.id <- n_max <- manual.id <- silent <- Light <- Day <- N <- is_missing <- Hour <- .change <- dst_start <- .dst <- .dst2 <- dst_adjustment <- auto.plot <- group.1 <- group.2 <- group.indices2 <- cluster_start <- cluster_end <- row_idx <- is_cluster <- cluster_idx <- is_pulse <- pulse_idx <- light <- time <- level <- duration <- mean_duration <- onset <- midpoint <- offset <- mean_onset <- mean_midpoint <- mean_offset <- Date.data <- print_n <- remove_duplicates <- NULL

empty_function <- function() {
rsconnect::accountInfo()
Expand Down
18 changes: 18 additions & 0 deletions R/import_LL.R
Original file line number Diff line number Diff line change
Expand Up @@ -44,6 +44,7 @@
#' column. If the column is not present it will add this column and fill it
#' with the filename of the importfile (see param `auto.id`).
#' * `print_n` can be used if you want to see more rows from the observation intervals
#' * `remove_duplicates` can be used if identical observations are present within or across multiple files. The default is `FALSE`. The function keeps only unique observations (=rows) if set to' TRUE'. This is a convenience implementation of [dplyr::distinct()].
#'
#' @param ... Parameters that get handed down to the specific import functions
#' @param device From what device do you want to import? For a few devices,
Expand Down Expand Up @@ -282,6 +283,7 @@ imports <- function(device,
locale = readr::default_locale(),
silent = FALSE,
print_n = 10,
remove_duplicates = FALSE,
... =
),
#function expression
Expand Down Expand Up @@ -353,6 +355,22 @@ imports <- function(device,
)
}

#if there are duplicate rows, remove them and print an info message
duplicates <- suppressMessages(janitor::get_dupes(data, -file.name) %>% nrow())
orig_rows <- data %>% nrow()

if(duplicates > 0 & remove_duplicates) {
data <- data %>% dplyr::distinct(dplyr::pick(-file.name),.keep_all = TRUE)
cat(paste0(format(orig_rows - nrow(data), big.mark = "'"), " duplicate rows were removed during import.\n"))
}

#if there are untreated duplicate rows, give a warning
if(duplicates > 0 & !remove_duplicates) {
messages <- paste0(format(duplicates, big.mark = "'"), " rows in your dataset(s) are identical to at least one other row. This causes problems during analysis. Please set `remove_duplicates = TRUE` during import. Import will be stopped now and a dataframe with the duplicate rows returned \nIf you want to find out which entries are duplicates. Use `{replace_with_data_object} %>% janitor::get_dupes(-file.name) on your imported dataset.\n")
warning(messages)
return(janitor::get_dupes(data, -file.name))
}

#if dst_adjustment is TRUE, adjust the datetime column
if(dst_adjustment) {
data <- data %>% dst_change_handler(filename.colname = file.name)
Expand Down
Loading