Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[WIP] Add 1D multilayer shallow water equations #30

Merged
merged 16 commits into from
Apr 2, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,61 @@

using OrdinaryDiffEq
using Trixi
using TrixiShallowWater

###############################################################################
# Semidiscretization of the multilayer shallow water equations with three layers

equations = ShallowWaterMultiLayerEquations1D(gravity_constant = 10.0,
rhos = (0.9, 1.0, 1.1))

initial_condition = initial_condition_convergence_test

###############################################################################
# Get the DG approximation space

volume_flux = (flux_ersing_etal, flux_nonconservative_ersing_etal)
solver = DGSEM(polydeg = 3,
surface_flux = (flux_ersing_etal, flux_nonconservative_ersing_etal),
volume_integral = VolumeIntegralFluxDifferencing(volume_flux))

###############################################################################
# Get the TreeMesh and setup a periodic mesh

coordinates_min = 0.0
coordinates_max = sqrt(2.0)
mesh = TreeMesh(coordinates_min, coordinates_max,
initial_refinement_level = 4,
n_cells_max = 10_000,
periodicity = true)

# create the semi discretization object
semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver,
source_terms = source_terms_convergence_test)

###############################################################################
# ODE solvers, callbacks etc.

tspan = (0.0, 1.0)
ode = semidiscretize(semi, tspan)

summary_callback = SummaryCallback()

analysis_interval = 500
analysis_callback = AnalysisCallback(semi, interval = analysis_interval)

alive_callback = AliveCallback(analysis_interval = analysis_interval)

save_solution = SaveSolutionCallback(interval = 500,
save_initial_solution = true,
save_final_solution = true)

callbacks = CallbackSet(summary_callback, analysis_callback, alive_callback, save_solution)

###############################################################################
# run the simulation

# use a Runge-Kutta method with automatic (error based) time step size control
sol = solve(ode, RDPK3SpFSAL49(), abstol = 1.0e-8, reltol = 1.0e-8,
save_everystep = false, callback = callbacks);
summary_callback() # print the timer summary
Original file line number Diff line number Diff line change
@@ -0,0 +1,92 @@

using OrdinaryDiffEq
using Trixi
using TrixiShallowWater

###############################################################################
# Semidiscretization of the multilayer shallow water equations for a dam break
# test with a discontinuous bottom topography function to test entropy conservation

equations = ShallowWaterMultiLayerEquations1D(gravity_constant = 9.81,
rhos = (0.85, 0.9, 1.0))

# Initial condition of a dam break with a discontinuous water heights and bottom topography.
# Works as intended for TreeMesh1D with `initial_refinement_level=5`. If the mesh
# refinement level is changed the initial condition below may need changed as well to
# ensure that the discontinuities lie on an element interface.
function initial_condition_dam_break(x, t, equations::ShallowWaterMultiLayerEquations1D)
v = [0.0, 0.0, 0.0]

# Set the discontinuity
if x[1] <= 10.0
H = [6.0, 4.0, 2.0]
b = 0.0
else
H = [5.5, 3.5, 1.5]
b = 0.5
end

return prim2cons(SVector(H..., v..., b), equations)
end

initial_condition = initial_condition_dam_break

###############################################################################
# Get the DG approximation space

volume_flux = (flux_ersing_etal, flux_nonconservative_ersing_etal)
solver = DGSEM(polydeg = 3,
surface_flux = (flux_ersing_etal, flux_nonconservative_ersing_etal),
volume_integral = VolumeIntegralFluxDifferencing(volume_flux))

###############################################################################
# Get the TreeMesh and setup a non-periodic mesh

coordinates_min = 0.0
coordinates_max = 20.0
mesh = TreeMesh(coordinates_min, coordinates_max,
initial_refinement_level = 5,
n_cells_max = 10000,
periodicity = false)

boundary_condition = boundary_condition_slip_wall
andrewwinters5000 marked this conversation as resolved.
Show resolved Hide resolved

# create the semidiscretization object
semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver,
boundary_conditions = boundary_condition)

###############################################################################
# ODE solvers

tspan = (0.0, 0.4)
ode = semidiscretize(semi, tspan)

###############################################################################
# Callbacks

summary_callback = SummaryCallback()

analysis_interval = 500
analysis_callback = AnalysisCallback(semi, interval = analysis_interval,
save_analysis = false,
extra_analysis_integrals = (energy_total,
energy_kinetic,
energy_internal))

stepsize_callback = StepsizeCallback(cfl = 1.0)

alive_callback = AliveCallback(analysis_interval = analysis_interval)

save_solution = SaveSolutionCallback(interval = 500,
save_initial_solution = true,
save_final_solution = true)

callbacks = CallbackSet(summary_callback, analysis_callback, alive_callback, save_solution)

###############################################################################
# run the simulation

# use a Runge-Kutta method with automatic (error based) time step size control
sol = solve(ode, RDPK3SpFSAL49(), abstol = 1.0e-8, reltol = 1.0e-8,
save_everystep = false, callback = callbacks);
summary_callback() # print the timer summary
Original file line number Diff line number Diff line change
@@ -0,0 +1,94 @@

using OrdinaryDiffEq
using Trixi
using TrixiShallowWater

###############################################################################
# Semidiscretization of the multilayer shallow water equations for a dam break
# test with a discontinuous bottom topography function for an entropy stable flux

equations = ShallowWaterMultiLayerEquations1D(gravity_constant = 9.81,
rhos = (0.85, 0.9, 1.0))

# Initial condition of a dam break with a discontinuous water heights and bottom topography.
# Works as intended for TreeMesh1D with `initial_refinement_level=5`. If the mesh
# refinement level is changed the initial condition below may need changed as well to
# ensure that the discontinuities lie on an element interface.
function initial_condition_dam_break(x, t, equations::ShallowWaterMultiLayerEquations1D)
v = [0.0, 0.0, 0.0]

# Set the discontinuity
if x[1] <= 10.0
H = [6.0, 4.0, 2.0]
b = 0.0
else
H = [5.5, 3.5, 1.5]
b = 0.5
end

return prim2cons(SVector(H..., v..., b), equations)
end

initial_condition = initial_condition_dam_break

###############################################################################
# Get the DG approximation space

volume_flux = (flux_ersing_etal, flux_nonconservative_ersing_etal)
solver = DGSEM(polydeg = 3,
surface_flux = (FluxPlusDissipation(flux_ersing_etal,
DissipationLocalLaxFriedrichs()),
flux_nonconservative_ersing_etal),
volume_integral = VolumeIntegralFluxDifferencing(volume_flux))

###############################################################################
# Get the TreeMesh and setup a non-periodic mesh

coordinates_min = 0.0
coordinates_max = 20.0
mesh = TreeMesh(coordinates_min, coordinates_max,
initial_refinement_level = 5,
n_cells_max = 10000,
periodicity = false)

boundary_condition = boundary_condition_slip_wall
patrickersing marked this conversation as resolved.
Show resolved Hide resolved

# create the semidiscretization object
semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver,
boundary_conditions = boundary_condition)

###############################################################################
# ODE solvers

tspan = (0.0, 0.4)
ode = semidiscretize(semi, tspan)

###############################################################################
# Callbacks

summary_callback = SummaryCallback()

analysis_interval = 500
analysis_callback = AnalysisCallback(semi, interval = analysis_interval,
save_analysis = false,
extra_analysis_integrals = (energy_total,
energy_kinetic,
energy_internal))

stepsize_callback = StepsizeCallback(cfl = 1.0)

alive_callback = AliveCallback(analysis_interval = analysis_interval)

save_solution = SaveSolutionCallback(interval = 500,
save_initial_solution = true,
save_final_solution = true)

callbacks = CallbackSet(summary_callback, analysis_callback, alive_callback, save_solution)

###############################################################################
# run the simulation

# use a Runge-Kutta method with automatic (error based) time step size control
sol = solve(ode, RDPK3SpFSAL49(), abstol = 1.0e-8, reltol = 1.0e-8,
save_everystep = false, callback = callbacks);
summary_callback() # print the timer summary
Original file line number Diff line number Diff line change
@@ -0,0 +1,86 @@

using OrdinaryDiffEq
using Trixi
using TrixiShallowWater

###############################################################################
# Semidiscretization of the multilayer shallow water equations to test well-balancedness

equations = ShallowWaterMultiLayerEquations1D(gravity_constant = 1.0, H0 = 0.7,
rhos = (0.8, 0.9, 1.0))

"""
initial_condition_fjordholm_well_balanced(x, t, equations::ShallowWaterMultiLayerEquations1D)

Initial condition to test well balanced with a bottom topography adapted from Fjordholm
- Ulrik Skre Fjordholm (2012)
Energy conservative and stable schemes for the two-layer shallow water equations.
[DOI: 10.1142/9789814417099_0039](https://doi.org/10.1142/9789814417099_0039)
"""
function initial_condition_fjordholm_well_balanced(x, t,
equations::ShallowWaterMultiLayerEquations1D)
inicenter = 0.5
x_norm = x[1] - inicenter
r = abs(x_norm)

H = [0.7, 0.6, 0.5]
v = [0.0, 0.0, 0.0]
b = r <= 0.1 ? 0.2 * (cos(10 * pi * (x[1] - 0.5)) + 1) : 0.0

return prim2cons(SVector(H..., v..., b), equations)
end

initial_condition = initial_condition_fjordholm_well_balanced

###############################################################################
# Get the DG approximation space

volume_flux = (flux_ersing_etal, flux_nonconservative_ersing_etal)
solver = DGSEM(polydeg = 3,
surface_flux = (flux_ersing_etal, flux_nonconservative_ersing_etal),
volume_integral = VolumeIntegralFluxDifferencing(volume_flux))

###############################################################################
# Get the TreeMesh and setup a periodic mesh

coordinates_min = 0.0
coordinates_max = 1.0
mesh = TreeMesh(coordinates_min, coordinates_max,
initial_refinement_level = 4,
n_cells_max = 10_000,
periodicity = true)

# create the semi discretization object
semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver)

###############################################################################
# ODE solvers, callbacks etc.

tspan = (0.0, 10.0)
ode = semidiscretize(semi, tspan)

summary_callback = SummaryCallback()

analysis_interval = 1000
analysis_callback = AnalysisCallback(semi, interval = analysis_interval,
save_analysis = false,
extra_analysis_integrals = (lake_at_rest_error,))

stepsize_callback = StepsizeCallback(cfl = 1.0)

alive_callback = AliveCallback(analysis_interval = analysis_interval)

save_solution = SaveSolutionCallback(interval = 1000,
save_initial_solution = true,
save_final_solution = true)

callbacks = CallbackSet(summary_callback, analysis_callback, alive_callback, save_solution,
stepsize_callback)

###############################################################################
# run the simulation

sol = solve(ode, CarpenterKennedy2N54(williamson_condition = false),
dt = 1.0, # solve needs some value here but it will be overwritten by the stepsize_callback
save_everystep = false, callback = callbacks);
summary_callback() # print the timer summary
12 changes: 7 additions & 5 deletions src/TrixiShallowWater.jl
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@ using Trixi
# Import additional symbols that are not exported by Trixi.jl
using Trixi: get_node_vars, set_node_vars!, waterheight
using MuladdMacro: @muladd
using StaticArrays: SVector, @SMatrix
using StaticArrays: SVector, @SMatrix, MVector
using Static: True, False
using LinearAlgebra: norm

Expand All @@ -19,15 +19,17 @@ include("solvers/indicators.jl")

# Export types/functions that define the public API of TrixiShallowWater.jl
export ShallowWaterEquationsWetDry1D, ShallowWaterEquationsWetDry2D,
ShallowWaterTwoLayerEquations1D, ShallowWaterTwoLayerEquations2D
ShallowWaterTwoLayerEquations1D, ShallowWaterTwoLayerEquations2D,
ShallowWaterMultiLayerEquations1D

export hydrostatic_reconstruction_chen_noelle, flux_nonconservative_chen_noelle,
min_max_speed_chen_noelle,
flux_hll_chen_noelle
min_max_speed_chen_noelle, flux_hll_chen_noelle,
flux_ersing_etal, flux_es_ersing_etal

export flux_es_ersing_etal
export nlayers, eachlayer

export PositivityPreservingLimiterShallowWater

export IndicatorHennemannGassnerShallowWater

end
Loading
Loading