-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[WIP] Add 1D multilayer shallow water equations (#30)
* add first implementation of the ml-swe in 1D * fix typo and formatting * add well-balanced test and lake_at_rest_error * add additional analysis functions and unit tests * add wall_bc, specialized dissipation and tests * switch to three-layer convergence test * update reference values for tests * Adjust comments * apply formatter * apply formatter * add changes from code review * fix comment * add comment for energy_total * add unit test for initial_condition_convergence
- Loading branch information
1 parent
cbabd75
commit 35126fb
Showing
13 changed files
with
1,154 additions
and
17 deletions.
There are no files selected for viewing
61 changes: 61 additions & 0 deletions
61
examples/tree_1d_dgsem/elixir_shallowwater_multilayer_convergence.jl
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,61 @@ | ||
|
||
using OrdinaryDiffEq | ||
using Trixi | ||
using TrixiShallowWater | ||
|
||
############################################################################### | ||
# Semidiscretization of the multilayer shallow water equations with three layers | ||
|
||
equations = ShallowWaterMultiLayerEquations1D(gravity_constant = 10.0, | ||
rhos = (0.9, 1.0, 1.1)) | ||
|
||
initial_condition = initial_condition_convergence_test | ||
|
||
############################################################################### | ||
# Get the DG approximation space | ||
|
||
volume_flux = (flux_ersing_etal, flux_nonconservative_ersing_etal) | ||
solver = DGSEM(polydeg = 3, | ||
surface_flux = (flux_ersing_etal, flux_nonconservative_ersing_etal), | ||
volume_integral = VolumeIntegralFluxDifferencing(volume_flux)) | ||
|
||
############################################################################### | ||
# Get the TreeMesh and setup a periodic mesh | ||
|
||
coordinates_min = 0.0 | ||
coordinates_max = sqrt(2.0) | ||
mesh = TreeMesh(coordinates_min, coordinates_max, | ||
initial_refinement_level = 4, | ||
n_cells_max = 10_000, | ||
periodicity = true) | ||
|
||
# create the semi discretization object | ||
semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver, | ||
source_terms = source_terms_convergence_test) | ||
|
||
############################################################################### | ||
# ODE solvers, callbacks etc. | ||
|
||
tspan = (0.0, 1.0) | ||
ode = semidiscretize(semi, tspan) | ||
|
||
summary_callback = SummaryCallback() | ||
|
||
analysis_interval = 500 | ||
analysis_callback = AnalysisCallback(semi, interval = analysis_interval) | ||
|
||
alive_callback = AliveCallback(analysis_interval = analysis_interval) | ||
|
||
save_solution = SaveSolutionCallback(interval = 500, | ||
save_initial_solution = true, | ||
save_final_solution = true) | ||
|
||
callbacks = CallbackSet(summary_callback, analysis_callback, alive_callback, save_solution) | ||
|
||
############################################################################### | ||
# run the simulation | ||
|
||
# use a Runge-Kutta method with automatic (error based) time step size control | ||
sol = solve(ode, RDPK3SpFSAL49(), abstol = 1.0e-8, reltol = 1.0e-8, | ||
save_everystep = false, callback = callbacks); | ||
summary_callback() # print the timer summary |
92 changes: 92 additions & 0 deletions
92
examples/tree_1d_dgsem/elixir_shallowwater_multilayer_dam_break_ec.jl
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,92 @@ | ||
|
||
using OrdinaryDiffEq | ||
using Trixi | ||
using TrixiShallowWater | ||
|
||
############################################################################### | ||
# Semidiscretization of the multilayer shallow water equations for a dam break | ||
# test with a discontinuous bottom topography function to test entropy conservation | ||
|
||
equations = ShallowWaterMultiLayerEquations1D(gravity_constant = 9.81, | ||
rhos = (0.85, 0.9, 1.0)) | ||
|
||
# Initial condition of a dam break with a discontinuous water heights and bottom topography. | ||
# Works as intended for TreeMesh1D with `initial_refinement_level=5`. If the mesh | ||
# refinement level is changed the initial condition below may need changed as well to | ||
# ensure that the discontinuities lie on an element interface. | ||
function initial_condition_dam_break(x, t, equations::ShallowWaterMultiLayerEquations1D) | ||
v = [0.0, 0.0, 0.0] | ||
|
||
# Set the discontinuity | ||
if x[1] <= 10.0 | ||
H = [6.0, 4.0, 2.0] | ||
b = 0.0 | ||
else | ||
H = [5.5, 3.5, 1.5] | ||
b = 0.5 | ||
end | ||
|
||
return prim2cons(SVector(H..., v..., b), equations) | ||
end | ||
|
||
initial_condition = initial_condition_dam_break | ||
|
||
############################################################################### | ||
# Get the DG approximation space | ||
|
||
volume_flux = (flux_ersing_etal, flux_nonconservative_ersing_etal) | ||
solver = DGSEM(polydeg = 3, | ||
surface_flux = (flux_ersing_etal, flux_nonconservative_ersing_etal), | ||
volume_integral = VolumeIntegralFluxDifferencing(volume_flux)) | ||
|
||
############################################################################### | ||
# Get the TreeMesh and setup a non-periodic mesh | ||
|
||
coordinates_min = 0.0 | ||
coordinates_max = 20.0 | ||
mesh = TreeMesh(coordinates_min, coordinates_max, | ||
initial_refinement_level = 5, | ||
n_cells_max = 10000, | ||
periodicity = false) | ||
|
||
boundary_condition = boundary_condition_slip_wall | ||
|
||
# create the semidiscretization object | ||
semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver, | ||
boundary_conditions = boundary_condition) | ||
|
||
############################################################################### | ||
# ODE solvers | ||
|
||
tspan = (0.0, 0.4) | ||
ode = semidiscretize(semi, tspan) | ||
|
||
############################################################################### | ||
# Callbacks | ||
|
||
summary_callback = SummaryCallback() | ||
|
||
analysis_interval = 500 | ||
analysis_callback = AnalysisCallback(semi, interval = analysis_interval, | ||
save_analysis = false, | ||
extra_analysis_integrals = (energy_total, | ||
energy_kinetic, | ||
energy_internal)) | ||
|
||
stepsize_callback = StepsizeCallback(cfl = 1.0) | ||
|
||
alive_callback = AliveCallback(analysis_interval = analysis_interval) | ||
|
||
save_solution = SaveSolutionCallback(interval = 500, | ||
save_initial_solution = true, | ||
save_final_solution = true) | ||
|
||
callbacks = CallbackSet(summary_callback, analysis_callback, alive_callback, save_solution) | ||
|
||
############################################################################### | ||
# run the simulation | ||
|
||
# use a Runge-Kutta method with automatic (error based) time step size control | ||
sol = solve(ode, RDPK3SpFSAL49(), abstol = 1.0e-8, reltol = 1.0e-8, | ||
save_everystep = false, callback = callbacks); | ||
summary_callback() # print the timer summary |
94 changes: 94 additions & 0 deletions
94
examples/tree_1d_dgsem/elixir_shallowwater_multilayer_dam_break_es.jl
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,94 @@ | ||
|
||
using OrdinaryDiffEq | ||
using Trixi | ||
using TrixiShallowWater | ||
|
||
############################################################################### | ||
# Semidiscretization of the multilayer shallow water equations for a dam break | ||
# test with a discontinuous bottom topography function for an entropy stable flux | ||
|
||
equations = ShallowWaterMultiLayerEquations1D(gravity_constant = 9.81, | ||
rhos = (0.85, 0.9, 1.0)) | ||
|
||
# Initial condition of a dam break with a discontinuous water heights and bottom topography. | ||
# Works as intended for TreeMesh1D with `initial_refinement_level=5`. If the mesh | ||
# refinement level is changed the initial condition below may need changed as well to | ||
# ensure that the discontinuities lie on an element interface. | ||
function initial_condition_dam_break(x, t, equations::ShallowWaterMultiLayerEquations1D) | ||
v = [0.0, 0.0, 0.0] | ||
|
||
# Set the discontinuity | ||
if x[1] <= 10.0 | ||
H = [6.0, 4.0, 2.0] | ||
b = 0.0 | ||
else | ||
H = [5.5, 3.5, 1.5] | ||
b = 0.5 | ||
end | ||
|
||
return prim2cons(SVector(H..., v..., b), equations) | ||
end | ||
|
||
initial_condition = initial_condition_dam_break | ||
|
||
############################################################################### | ||
# Get the DG approximation space | ||
|
||
volume_flux = (flux_ersing_etal, flux_nonconservative_ersing_etal) | ||
solver = DGSEM(polydeg = 3, | ||
surface_flux = (FluxPlusDissipation(flux_ersing_etal, | ||
DissipationLocalLaxFriedrichs()), | ||
flux_nonconservative_ersing_etal), | ||
volume_integral = VolumeIntegralFluxDifferencing(volume_flux)) | ||
|
||
############################################################################### | ||
# Get the TreeMesh and setup a non-periodic mesh | ||
|
||
coordinates_min = 0.0 | ||
coordinates_max = 20.0 | ||
mesh = TreeMesh(coordinates_min, coordinates_max, | ||
initial_refinement_level = 5, | ||
n_cells_max = 10000, | ||
periodicity = false) | ||
|
||
boundary_condition = boundary_condition_slip_wall | ||
|
||
# create the semidiscretization object | ||
semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver, | ||
boundary_conditions = boundary_condition) | ||
|
||
############################################################################### | ||
# ODE solvers | ||
|
||
tspan = (0.0, 0.4) | ||
ode = semidiscretize(semi, tspan) | ||
|
||
############################################################################### | ||
# Callbacks | ||
|
||
summary_callback = SummaryCallback() | ||
|
||
analysis_interval = 500 | ||
analysis_callback = AnalysisCallback(semi, interval = analysis_interval, | ||
save_analysis = false, | ||
extra_analysis_integrals = (energy_total, | ||
energy_kinetic, | ||
energy_internal)) | ||
|
||
stepsize_callback = StepsizeCallback(cfl = 1.0) | ||
|
||
alive_callback = AliveCallback(analysis_interval = analysis_interval) | ||
|
||
save_solution = SaveSolutionCallback(interval = 500, | ||
save_initial_solution = true, | ||
save_final_solution = true) | ||
|
||
callbacks = CallbackSet(summary_callback, analysis_callback, alive_callback, save_solution) | ||
|
||
############################################################################### | ||
# run the simulation | ||
|
||
# use a Runge-Kutta method with automatic (error based) time step size control | ||
sol = solve(ode, RDPK3SpFSAL49(), abstol = 1.0e-8, reltol = 1.0e-8, | ||
save_everystep = false, callback = callbacks); | ||
summary_callback() # print the timer summary |
86 changes: 86 additions & 0 deletions
86
examples/tree_1d_dgsem/elixir_shallowwater_multilayer_well_balanced.jl
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,86 @@ | ||
|
||
using OrdinaryDiffEq | ||
using Trixi | ||
using TrixiShallowWater | ||
|
||
############################################################################### | ||
# Semidiscretization of the multilayer shallow water equations to test well-balancedness | ||
|
||
equations = ShallowWaterMultiLayerEquations1D(gravity_constant = 1.0, H0 = 0.7, | ||
rhos = (0.8, 0.9, 1.0)) | ||
|
||
""" | ||
initial_condition_fjordholm_well_balanced(x, t, equations::ShallowWaterMultiLayerEquations1D) | ||
Initial condition to test well balanced with a bottom topography adapted from Fjordholm | ||
- Ulrik Skre Fjordholm (2012) | ||
Energy conservative and stable schemes for the two-layer shallow water equations. | ||
[DOI: 10.1142/9789814417099_0039](https://doi.org/10.1142/9789814417099_0039) | ||
""" | ||
function initial_condition_fjordholm_well_balanced(x, t, | ||
equations::ShallowWaterMultiLayerEquations1D) | ||
inicenter = 0.5 | ||
x_norm = x[1] - inicenter | ||
r = abs(x_norm) | ||
|
||
H = [0.7, 0.6, 0.5] | ||
v = [0.0, 0.0, 0.0] | ||
b = r <= 0.1 ? 0.2 * (cos(10 * pi * (x[1] - 0.5)) + 1) : 0.0 | ||
|
||
return prim2cons(SVector(H..., v..., b), equations) | ||
end | ||
|
||
initial_condition = initial_condition_fjordholm_well_balanced | ||
|
||
############################################################################### | ||
# Get the DG approximation space | ||
|
||
volume_flux = (flux_ersing_etal, flux_nonconservative_ersing_etal) | ||
solver = DGSEM(polydeg = 3, | ||
surface_flux = (flux_ersing_etal, flux_nonconservative_ersing_etal), | ||
volume_integral = VolumeIntegralFluxDifferencing(volume_flux)) | ||
|
||
############################################################################### | ||
# Get the TreeMesh and setup a periodic mesh | ||
|
||
coordinates_min = 0.0 | ||
coordinates_max = 1.0 | ||
mesh = TreeMesh(coordinates_min, coordinates_max, | ||
initial_refinement_level = 4, | ||
n_cells_max = 10_000, | ||
periodicity = true) | ||
|
||
# create the semi discretization object | ||
semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver) | ||
|
||
############################################################################### | ||
# ODE solvers, callbacks etc. | ||
|
||
tspan = (0.0, 10.0) | ||
ode = semidiscretize(semi, tspan) | ||
|
||
summary_callback = SummaryCallback() | ||
|
||
analysis_interval = 1000 | ||
analysis_callback = AnalysisCallback(semi, interval = analysis_interval, | ||
save_analysis = false, | ||
extra_analysis_integrals = (lake_at_rest_error,)) | ||
|
||
stepsize_callback = StepsizeCallback(cfl = 1.0) | ||
|
||
alive_callback = AliveCallback(analysis_interval = analysis_interval) | ||
|
||
save_solution = SaveSolutionCallback(interval = 1000, | ||
save_initial_solution = true, | ||
save_final_solution = true) | ||
|
||
callbacks = CallbackSet(summary_callback, analysis_callback, alive_callback, save_solution, | ||
stepsize_callback) | ||
|
||
############################################################################### | ||
# run the simulation | ||
|
||
sol = solve(ode, CarpenterKennedy2N54(williamson_condition = false), | ||
dt = 1.0, # solve needs some value here but it will be overwritten by the stepsize_callback | ||
save_everystep = false, callback = callbacks); | ||
summary_callback() # print the timer summary |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.