Skip to content

Commit

Permalink
Add multilayer shallow water equations in 2D (#40)
Browse files Browse the repository at this point in the history
* add multilayer SWE in 2D

* fix doc references

* fix typo and formatting

* soften tolerance to fix test

* add wall_bc to dam_break_test to increase coverage

* fix comments, update  convergence test values

* address comment changes from code review

* set true discontinuities in 2D

* Apply suggestions from code review

remove implicit multiplication; fix comment

Co-authored-by: Andrew Winters <[email protected]>

* soften tolerances for macOS

* apply formatter

* format again

* update 2D convergence test

* update 1D convergence test

* add changes from code review

* remove empty line

* update formatting of bottom topography function

---------

Co-authored-by: Andrew Winters <[email protected]>
  • Loading branch information
patrickersing and andrewwinters5000 authored Apr 30, 2024
1 parent b928469 commit 2c9afa2
Show file tree
Hide file tree
Showing 20 changed files with 2,013 additions and 57 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@ using TrixiShallowWater
###############################################################################
# Semidiscretization of the multilayer shallow water equations with three layers

equations = ShallowWaterMultiLayerEquations1D(gravity_constant = 10.0,
equations = ShallowWaterMultiLayerEquations1D(gravity_constant = 1.1,
rhos = (0.9, 1.0, 1.1))

initial_condition = initial_condition_convergence_test
Expand All @@ -25,7 +25,7 @@ solver = DGSEM(polydeg = 3,
coordinates_min = 0.0
coordinates_max = sqrt(2.0)
mesh = TreeMesh(coordinates_min, coordinates_max,
initial_refinement_level = 4,
initial_refinement_level = 2,
n_cells_max = 10_000,
periodicity = true)

Expand All @@ -50,12 +50,16 @@ save_solution = SaveSolutionCallback(interval = 500,
save_initial_solution = true,
save_final_solution = true)

callbacks = CallbackSet(summary_callback, analysis_callback, alive_callback, save_solution)
stepsize_callback = StepsizeCallback(cfl = 1.0)

callbacks = CallbackSet(summary_callback, analysis_callback, alive_callback, save_solution,
stepsize_callback)

###############################################################################
# run the simulation

# use a Runge-Kutta method with automatic (error based) time step size control
sol = solve(ode, RDPK3SpFSAL49(), abstol = 1.0e-8, reltol = 1.0e-8,
sol = solve(ode, CarpenterKennedy2N54(williamson_condition = false),
dt = 1.0, # solve needs some value here but it will be overwritten by the stepsize_callback
save_everystep = false, callback = callbacks);

summary_callback() # print the timer summary
Original file line number Diff line number Diff line change
@@ -0,0 +1,64 @@

using OrdinaryDiffEq
using Trixi
using TrixiShallowWater

###############################################################################
# Semidiscretization of the multilayer shallow water equations with three layers

equations = ShallowWaterMultiLayerEquations2D(gravity_constant = 1.1,
rhos = (0.9, 1.0, 1.1))

initial_condition = initial_condition_convergence_test

###############################################################################
# Get the DG approximation space

volume_flux = (flux_ersing_etal, flux_nonconservative_ersing_etal)
solver = DGSEM(polydeg = 3,
surface_flux = (flux_ersing_etal, flux_nonconservative_ersing_etal),
volume_integral = VolumeIntegralFluxDifferencing(volume_flux))

###############################################################################
# Get the TreeMesh and setup a periodic mesh

coordinates_min = (0.0, 0.0)
coordinates_max = (sqrt(2.0), sqrt(2.0))
mesh = TreeMesh(coordinates_min, coordinates_max,
initial_refinement_level = 2,
n_cells_max = 100_000,
periodicity = true)

# create the semi discretization object
semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver,
source_terms = source_terms_convergence_test)

###############################################################################
# ODE solvers, callbacks etc.

tspan = (0.0, 1.0)
ode = semidiscretize(semi, tspan)

summary_callback = SummaryCallback()

analysis_interval = 500
analysis_callback = AnalysisCallback(semi, interval = analysis_interval)

alive_callback = AliveCallback(analysis_interval = analysis_interval)

save_solution = SaveSolutionCallback(interval = 500,
save_initial_solution = true,
save_final_solution = true)

stepsize_callback = StepsizeCallback(cfl = 1.0)

callbacks = CallbackSet(summary_callback, analysis_callback, alive_callback, save_solution,
stepsize_callback)

###############################################################################
# run the simulation

sol = solve(ode, CarpenterKennedy2N54(williamson_condition = false),
dt = 1.0, # solve needs some value here but it will be overwritten by the stepsize_callback
save_everystep = false, callback = callbacks);
summary_callback() # print the timer summary
134 changes: 134 additions & 0 deletions examples/tree_2d_dgsem/elixir_shallowwater_multilayer_dam_break.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,134 @@

using OrdinaryDiffEq
using Trixi
using TrixiShallowWater

###############################################################################
# Semidiscretization of the multilayer shallow water equations for a dam break test with a
# discontinuous bottom topography function to test entropy conservation

equations = ShallowWaterMultiLayerEquations2D(gravity_constant = 1.0,
rhos = (0.9, 0.95, 1.0))

# This academic testcase sets up a discontinuous bottom topography
# function and initial condition to test entropy conservation.

function initial_condition_dam_break(x, t, equations::ShallowWaterMultiLayerEquations2D)
# Bottom topography
b = 0.3 * exp(-0.5 * ((x[1])^2 + (x[2])^2))

if x[1] < 0.0
H = SVector(1.0, 0.8, 0.6)
else
H = SVector(0.9, 0.7, 0.5)
b += 0.1
end

v1 = zero(H)
v2 = zero(H)
return prim2cons(SVector(H..., v1..., v2..., b),
equations)
end

initial_condition = initial_condition_dam_break

boundary_conditions = boundary_condition_slip_wall

###############################################################################
# Get the DG approximation space

volume_flux = (flux_ersing_etal, flux_nonconservative_ersing_etal)
surface_flux = (flux_ersing_etal, flux_nonconservative_ersing_etal)
solver = DGSEM(polydeg = 3, surface_flux = surface_flux,
volume_integral = VolumeIntegralFluxDifferencing(volume_flux))

###############################################################################
# Get the TreeMesh and setup a non-periodic mesh with wall boundary conditions

coordinates_min = (-1.0, -1.0)
coordinates_max = (1.0, 1.0)
mesh = TreeMesh(coordinates_min, coordinates_max,
initial_refinement_level = 4,
n_cells_max = 10_000,
periodicity = false)

# Create the semi discretization object
semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver,
boundary_conditions = boundary_conditions)
###############################################################################
# ODE solver

tspan = (0.0, 2.0)
ode = semidiscretize(semi, tspan)
###############################################################################
#=
Workaround for TreeMesh2D to set true discontinuities for debugging and testing.
Essentially, this is a slight augmentation of the `compute_coefficients` where the `x` node values
passed here are slightly perturbed in order to set a true discontinuity that avoids the doubled
value of the LGL nodes at a particular element interface.
=#

# Point to the data we want to augment
u = Trixi.wrap_array(ode.u0, semi)
# Reset the initial condition
for element in eachelement(semi.solver, semi.cache)
for i in eachnode(semi.solver), j in eachnode(semi.solver)
x_node = Trixi.get_node_coords(semi.cache.elements.node_coordinates, equations,
semi.solver, i, j, element)
# Changing the node positions passed to the initial condition by the minimum
# amount possible with the current type of floating point numbers allows setting
# discontinuous initial data in a simple way. In particular, a check like `if x < x_jump`
# works if the jump location `x_jump` is at the position of an interface.
if i == 1 && j == 1 # bottom left corner
x_node = SVector(nextfloat(x_node[1]), nextfloat(x_node[2]))
elseif i == 1 && j == nnodes(semi.solver) # top left corner
x_node = SVector(nextfloat(x_node[1]), prevfloat(x_node[2]))
elseif i == nnodes(semi.solver) && j == 1 # bottom right corner
x_node = SVector(prevfloat(x_node[1]), nextfloat(x_node[2]))
elseif i == nnodes(semi.solver) && j == nnodes(semi.solver) # top right corner
x_node = SVector(prevfloat(x_node[1]), prevfloat(x_node[2]))
elseif i == 1 # left boundary
x_node = SVector(nextfloat(x_node[1]), x_node[2])
elseif j == 1 # bottom boundary
x_node = SVector(x_node[1], nextfloat(x_node[2]))
elseif i == nnodes(semi.solver) # right boundary
x_node = SVector(prevfloat(x_node[1]), x_node[2])
elseif j == nnodes(semi.solver) # top boundary
x_node = SVector(x_node[1], prevfloat(x_node[2]))
end

u_node = initial_condition_dam_break(x_node, first(tspan), equations)
Trixi.set_node_vars!(u, u_node, equations, semi.solver, i, j, element)
end
end

###############################################################################
# Callbacks

summary_callback = SummaryCallback()

analysis_interval = 500
analysis_callback = AnalysisCallback(semi, interval = analysis_interval,
save_analysis = false,
extra_analysis_integrals = (energy_total,
energy_kinetic,
energy_internal))

alive_callback = AliveCallback(analysis_interval = analysis_interval)

save_solution = SaveSolutionCallback(interval = 500,
save_initial_solution = true,
save_final_solution = true)

stepsize_callback = StepsizeCallback(cfl = 1.0)

callbacks = CallbackSet(summary_callback, analysis_callback, alive_callback, save_solution,
stepsize_callback)

###############################################################################
# run the simulation

sol = solve(ode, CarpenterKennedy2N54(williamson_condition = false),
dt = 1.0, # solve needs some value here but it will be overwritten by the stepsize_callback
save_everystep = false, callback = callbacks);
summary_callback() # print the timer summary
Original file line number Diff line number Diff line change
@@ -0,0 +1,79 @@

using OrdinaryDiffEq
using Trixi
using TrixiShallowWater

###############################################################################
# Semidiscretization of the multilayer shallow water equations with a bottom topography function
# to test well-balancedness

equations = ShallowWaterMultiLayerEquations2D(gravity_constant = 9.81, H0 = 0.6,
rhos = (0.7, 0.8, 0.9, 1.0))

# An initial condition with constant total water height, zero velocities and a bottom topography to
# test well-balancedness
function initial_condition_well_balanced(x, t, equations::ShallowWaterMultiLayerEquations2D)
H = SVector(0.6, 0.55, 0.5, 0.45)
v1 = zero(H)
v2 = zero(H)
b = (((x[1] - 0.5)^2 + (x[2] - 0.5)^2) < 0.04 ?
0.2 * (cos(4 * pi * sqrt((x[1] - 0.5)^2 + (x[2] -
0.5)^2)) + 1) : 0.0)

return prim2cons(SVector(H..., v1..., v2..., b),
equations)
end

initial_condition = initial_condition_well_balanced

###############################################################################
# Get the DG approximation space

volume_flux = (flux_ersing_etal, flux_nonconservative_ersing_etal)
surface_flux = (flux_ersing_etal, flux_nonconservative_ersing_etal)
solver = DGSEM(polydeg = 3, surface_flux = surface_flux,
volume_integral = VolumeIntegralFluxDifferencing(volume_flux))

###############################################################################
# Get the TreeMesh and setup a periodic mesh

coordinates_min = (0.0, 0.0)
coordinates_max = (1.0, 1.0)
mesh = TreeMesh(coordinates_min, coordinates_max,
initial_refinement_level = 3,
n_cells_max = 10_000,
periodicity = true)

# Create the semi discretization object
semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver)

###############################################################################
# ODE solver

tspan = (0.0, 10.0)
ode = semidiscretize(semi, tspan)

summary_callback = SummaryCallback()

analysis_interval = 1000
analysis_callback = AnalysisCallback(semi, interval = analysis_interval,
extra_analysis_integrals = (lake_at_rest_error,))

stepsize_callback = StepsizeCallback(cfl = 1.0)

alive_callback = AliveCallback(analysis_interval = analysis_interval)

save_solution = SaveSolutionCallback(interval = 1000,
save_initial_solution = true,
save_final_solution = true)

callbacks = CallbackSet(summary_callback, analysis_callback, alive_callback, save_solution,
stepsize_callback)

###############################################################################
# run the simulation

sol = solve(ode, CarpenterKennedy2N54(williamson_condition = false),
dt = 1.0, # solve needs some value here but it will be overwritten by the stepsize_callback
save_everystep = false, callback = callbacks);
summary_callback() # print the timer summary
Original file line number Diff line number Diff line change
@@ -0,0 +1,65 @@

using OrdinaryDiffEq
using Trixi
using TrixiShallowWater

###############################################################################
# Semidiscretization of the multilayer shallow water equations with a periodic
# bottom topography function (set in the initial conditions)

equations = ShallowWaterMultiLayerEquations2D(gravity_constant = 1.1,
rhos = (0.9, 1.0, 1.1))

initial_condition = initial_condition_convergence_test

###############################################################################
# Get the DG approximation space

volume_flux = (flux_ersing_etal, flux_nonconservative_ersing_etal)
surface_flux = (flux_ersing_etal, flux_nonconservative_ersing_etal)
solver = DGSEM(polydeg = 6, surface_flux = surface_flux,
volume_integral = VolumeIntegralFluxDifferencing(volume_flux))

###############################################################################
# This setup is for the curved, split form convergence test on a periodic domain

# Get the unstructured quad mesh from a file (downloads the file if not available locally)
mesh_file = Trixi.download("https://gist.githubusercontent.com/andrewwinters5000/8f8cd23df27fcd494553f2a89f3c1ba4/raw/85e3c8d976bbe57ca3d559d653087b0889535295/mesh_alfven_wave_with_twist_and_flip.mesh",
joinpath(@__DIR__, "mesh_alfven_wave_with_twist_and_flip.mesh"))

mesh = UnstructuredMesh2D(mesh_file, periodicity = true)

# Create the semidiscretization object
semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver,
source_terms = source_terms_convergence_test)

###############################################################################
# ODE solvers, callbacks etc.

tspan = (0.0, 1.0)
ode = semidiscretize(semi, tspan)

summary_callback = SummaryCallback()

analysis_interval = 500
analysis_callback = AnalysisCallback(semi, interval = analysis_interval)

alive_callback = AliveCallback(analysis_interval = analysis_interval)

save_solution = SaveSolutionCallback(interval = 500,
save_initial_solution = true,
save_final_solution = true)

stepsize_callback = StepsizeCallback(cfl = 0.9)

callbacks = CallbackSet(summary_callback, analysis_callback, alive_callback, save_solution,
stepsize_callback)

###############################################################################
# run the simulation

sol = solve(ode, CarpenterKennedy2N54(williamson_condition = false),
dt = 1.0, # solve needs some value here but it will be overwritten by the stepsize_callback
save_everystep = false, callback = callbacks);

summary_callback() # print the timer summary
Loading

0 comments on commit 2c9afa2

Please sign in to comment.