-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add multilayer shallow water equations in 2D (#40)
* add multilayer SWE in 2D * fix doc references * fix typo and formatting * soften tolerance to fix test * add wall_bc to dam_break_test to increase coverage * fix comments, update convergence test values * address comment changes from code review * set true discontinuities in 2D * Apply suggestions from code review remove implicit multiplication; fix comment Co-authored-by: Andrew Winters <[email protected]> * soften tolerances for macOS * apply formatter * format again * update 2D convergence test * update 1D convergence test * add changes from code review * remove empty line * update formatting of bottom topography function --------- Co-authored-by: Andrew Winters <[email protected]>
- Loading branch information
1 parent
b928469
commit 2c9afa2
Showing
20 changed files
with
2,013 additions
and
57 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
64 changes: 64 additions & 0 deletions
64
examples/tree_2d_dgsem/elixir_shallowwater_multilayer_convergence.jl
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,64 @@ | ||
|
||
using OrdinaryDiffEq | ||
using Trixi | ||
using TrixiShallowWater | ||
|
||
############################################################################### | ||
# Semidiscretization of the multilayer shallow water equations with three layers | ||
|
||
equations = ShallowWaterMultiLayerEquations2D(gravity_constant = 1.1, | ||
rhos = (0.9, 1.0, 1.1)) | ||
|
||
initial_condition = initial_condition_convergence_test | ||
|
||
############################################################################### | ||
# Get the DG approximation space | ||
|
||
volume_flux = (flux_ersing_etal, flux_nonconservative_ersing_etal) | ||
solver = DGSEM(polydeg = 3, | ||
surface_flux = (flux_ersing_etal, flux_nonconservative_ersing_etal), | ||
volume_integral = VolumeIntegralFluxDifferencing(volume_flux)) | ||
|
||
############################################################################### | ||
# Get the TreeMesh and setup a periodic mesh | ||
|
||
coordinates_min = (0.0, 0.0) | ||
coordinates_max = (sqrt(2.0), sqrt(2.0)) | ||
mesh = TreeMesh(coordinates_min, coordinates_max, | ||
initial_refinement_level = 2, | ||
n_cells_max = 100_000, | ||
periodicity = true) | ||
|
||
# create the semi discretization object | ||
semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver, | ||
source_terms = source_terms_convergence_test) | ||
|
||
############################################################################### | ||
# ODE solvers, callbacks etc. | ||
|
||
tspan = (0.0, 1.0) | ||
ode = semidiscretize(semi, tspan) | ||
|
||
summary_callback = SummaryCallback() | ||
|
||
analysis_interval = 500 | ||
analysis_callback = AnalysisCallback(semi, interval = analysis_interval) | ||
|
||
alive_callback = AliveCallback(analysis_interval = analysis_interval) | ||
|
||
save_solution = SaveSolutionCallback(interval = 500, | ||
save_initial_solution = true, | ||
save_final_solution = true) | ||
|
||
stepsize_callback = StepsizeCallback(cfl = 1.0) | ||
|
||
callbacks = CallbackSet(summary_callback, analysis_callback, alive_callback, save_solution, | ||
stepsize_callback) | ||
|
||
############################################################################### | ||
# run the simulation | ||
|
||
sol = solve(ode, CarpenterKennedy2N54(williamson_condition = false), | ||
dt = 1.0, # solve needs some value here but it will be overwritten by the stepsize_callback | ||
save_everystep = false, callback = callbacks); | ||
summary_callback() # print the timer summary |
134 changes: 134 additions & 0 deletions
134
examples/tree_2d_dgsem/elixir_shallowwater_multilayer_dam_break.jl
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,134 @@ | ||
|
||
using OrdinaryDiffEq | ||
using Trixi | ||
using TrixiShallowWater | ||
|
||
############################################################################### | ||
# Semidiscretization of the multilayer shallow water equations for a dam break test with a | ||
# discontinuous bottom topography function to test entropy conservation | ||
|
||
equations = ShallowWaterMultiLayerEquations2D(gravity_constant = 1.0, | ||
rhos = (0.9, 0.95, 1.0)) | ||
|
||
# This academic testcase sets up a discontinuous bottom topography | ||
# function and initial condition to test entropy conservation. | ||
|
||
function initial_condition_dam_break(x, t, equations::ShallowWaterMultiLayerEquations2D) | ||
# Bottom topography | ||
b = 0.3 * exp(-0.5 * ((x[1])^2 + (x[2])^2)) | ||
|
||
if x[1] < 0.0 | ||
H = SVector(1.0, 0.8, 0.6) | ||
else | ||
H = SVector(0.9, 0.7, 0.5) | ||
b += 0.1 | ||
end | ||
|
||
v1 = zero(H) | ||
v2 = zero(H) | ||
return prim2cons(SVector(H..., v1..., v2..., b), | ||
equations) | ||
end | ||
|
||
initial_condition = initial_condition_dam_break | ||
|
||
boundary_conditions = boundary_condition_slip_wall | ||
|
||
############################################################################### | ||
# Get the DG approximation space | ||
|
||
volume_flux = (flux_ersing_etal, flux_nonconservative_ersing_etal) | ||
surface_flux = (flux_ersing_etal, flux_nonconservative_ersing_etal) | ||
solver = DGSEM(polydeg = 3, surface_flux = surface_flux, | ||
volume_integral = VolumeIntegralFluxDifferencing(volume_flux)) | ||
|
||
############################################################################### | ||
# Get the TreeMesh and setup a non-periodic mesh with wall boundary conditions | ||
|
||
coordinates_min = (-1.0, -1.0) | ||
coordinates_max = (1.0, 1.0) | ||
mesh = TreeMesh(coordinates_min, coordinates_max, | ||
initial_refinement_level = 4, | ||
n_cells_max = 10_000, | ||
periodicity = false) | ||
|
||
# Create the semi discretization object | ||
semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver, | ||
boundary_conditions = boundary_conditions) | ||
############################################################################### | ||
# ODE solver | ||
|
||
tspan = (0.0, 2.0) | ||
ode = semidiscretize(semi, tspan) | ||
############################################################################### | ||
#= | ||
Workaround for TreeMesh2D to set true discontinuities for debugging and testing. | ||
Essentially, this is a slight augmentation of the `compute_coefficients` where the `x` node values | ||
passed here are slightly perturbed in order to set a true discontinuity that avoids the doubled | ||
value of the LGL nodes at a particular element interface. | ||
=# | ||
|
||
# Point to the data we want to augment | ||
u = Trixi.wrap_array(ode.u0, semi) | ||
# Reset the initial condition | ||
for element in eachelement(semi.solver, semi.cache) | ||
for i in eachnode(semi.solver), j in eachnode(semi.solver) | ||
x_node = Trixi.get_node_coords(semi.cache.elements.node_coordinates, equations, | ||
semi.solver, i, j, element) | ||
# Changing the node positions passed to the initial condition by the minimum | ||
# amount possible with the current type of floating point numbers allows setting | ||
# discontinuous initial data in a simple way. In particular, a check like `if x < x_jump` | ||
# works if the jump location `x_jump` is at the position of an interface. | ||
if i == 1 && j == 1 # bottom left corner | ||
x_node = SVector(nextfloat(x_node[1]), nextfloat(x_node[2])) | ||
elseif i == 1 && j == nnodes(semi.solver) # top left corner | ||
x_node = SVector(nextfloat(x_node[1]), prevfloat(x_node[2])) | ||
elseif i == nnodes(semi.solver) && j == 1 # bottom right corner | ||
x_node = SVector(prevfloat(x_node[1]), nextfloat(x_node[2])) | ||
elseif i == nnodes(semi.solver) && j == nnodes(semi.solver) # top right corner | ||
x_node = SVector(prevfloat(x_node[1]), prevfloat(x_node[2])) | ||
elseif i == 1 # left boundary | ||
x_node = SVector(nextfloat(x_node[1]), x_node[2]) | ||
elseif j == 1 # bottom boundary | ||
x_node = SVector(x_node[1], nextfloat(x_node[2])) | ||
elseif i == nnodes(semi.solver) # right boundary | ||
x_node = SVector(prevfloat(x_node[1]), x_node[2]) | ||
elseif j == nnodes(semi.solver) # top boundary | ||
x_node = SVector(x_node[1], prevfloat(x_node[2])) | ||
end | ||
|
||
u_node = initial_condition_dam_break(x_node, first(tspan), equations) | ||
Trixi.set_node_vars!(u, u_node, equations, semi.solver, i, j, element) | ||
end | ||
end | ||
|
||
############################################################################### | ||
# Callbacks | ||
|
||
summary_callback = SummaryCallback() | ||
|
||
analysis_interval = 500 | ||
analysis_callback = AnalysisCallback(semi, interval = analysis_interval, | ||
save_analysis = false, | ||
extra_analysis_integrals = (energy_total, | ||
energy_kinetic, | ||
energy_internal)) | ||
|
||
alive_callback = AliveCallback(analysis_interval = analysis_interval) | ||
|
||
save_solution = SaveSolutionCallback(interval = 500, | ||
save_initial_solution = true, | ||
save_final_solution = true) | ||
|
||
stepsize_callback = StepsizeCallback(cfl = 1.0) | ||
|
||
callbacks = CallbackSet(summary_callback, analysis_callback, alive_callback, save_solution, | ||
stepsize_callback) | ||
|
||
############################################################################### | ||
# run the simulation | ||
|
||
sol = solve(ode, CarpenterKennedy2N54(williamson_condition = false), | ||
dt = 1.0, # solve needs some value here but it will be overwritten by the stepsize_callback | ||
save_everystep = false, callback = callbacks); | ||
summary_callback() # print the timer summary |
79 changes: 79 additions & 0 deletions
79
examples/tree_2d_dgsem/elixir_shallowwater_multilayer_well_balanced.jl
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,79 @@ | ||
|
||
using OrdinaryDiffEq | ||
using Trixi | ||
using TrixiShallowWater | ||
|
||
############################################################################### | ||
# Semidiscretization of the multilayer shallow water equations with a bottom topography function | ||
# to test well-balancedness | ||
|
||
equations = ShallowWaterMultiLayerEquations2D(gravity_constant = 9.81, H0 = 0.6, | ||
rhos = (0.7, 0.8, 0.9, 1.0)) | ||
|
||
# An initial condition with constant total water height, zero velocities and a bottom topography to | ||
# test well-balancedness | ||
function initial_condition_well_balanced(x, t, equations::ShallowWaterMultiLayerEquations2D) | ||
H = SVector(0.6, 0.55, 0.5, 0.45) | ||
v1 = zero(H) | ||
v2 = zero(H) | ||
b = (((x[1] - 0.5)^2 + (x[2] - 0.5)^2) < 0.04 ? | ||
0.2 * (cos(4 * pi * sqrt((x[1] - 0.5)^2 + (x[2] - | ||
0.5)^2)) + 1) : 0.0) | ||
|
||
return prim2cons(SVector(H..., v1..., v2..., b), | ||
equations) | ||
end | ||
|
||
initial_condition = initial_condition_well_balanced | ||
|
||
############################################################################### | ||
# Get the DG approximation space | ||
|
||
volume_flux = (flux_ersing_etal, flux_nonconservative_ersing_etal) | ||
surface_flux = (flux_ersing_etal, flux_nonconservative_ersing_etal) | ||
solver = DGSEM(polydeg = 3, surface_flux = surface_flux, | ||
volume_integral = VolumeIntegralFluxDifferencing(volume_flux)) | ||
|
||
############################################################################### | ||
# Get the TreeMesh and setup a periodic mesh | ||
|
||
coordinates_min = (0.0, 0.0) | ||
coordinates_max = (1.0, 1.0) | ||
mesh = TreeMesh(coordinates_min, coordinates_max, | ||
initial_refinement_level = 3, | ||
n_cells_max = 10_000, | ||
periodicity = true) | ||
|
||
# Create the semi discretization object | ||
semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver) | ||
|
||
############################################################################### | ||
# ODE solver | ||
|
||
tspan = (0.0, 10.0) | ||
ode = semidiscretize(semi, tspan) | ||
|
||
summary_callback = SummaryCallback() | ||
|
||
analysis_interval = 1000 | ||
analysis_callback = AnalysisCallback(semi, interval = analysis_interval, | ||
extra_analysis_integrals = (lake_at_rest_error,)) | ||
|
||
stepsize_callback = StepsizeCallback(cfl = 1.0) | ||
|
||
alive_callback = AliveCallback(analysis_interval = analysis_interval) | ||
|
||
save_solution = SaveSolutionCallback(interval = 1000, | ||
save_initial_solution = true, | ||
save_final_solution = true) | ||
|
||
callbacks = CallbackSet(summary_callback, analysis_callback, alive_callback, save_solution, | ||
stepsize_callback) | ||
|
||
############################################################################### | ||
# run the simulation | ||
|
||
sol = solve(ode, CarpenterKennedy2N54(williamson_condition = false), | ||
dt = 1.0, # solve needs some value here but it will be overwritten by the stepsize_callback | ||
save_everystep = false, callback = callbacks); | ||
summary_callback() # print the timer summary |
65 changes: 65 additions & 0 deletions
65
examples/unstructured_2d_dgsem/elixir_shallowwater_multilayer_convergence.jl
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,65 @@ | ||
|
||
using OrdinaryDiffEq | ||
using Trixi | ||
using TrixiShallowWater | ||
|
||
############################################################################### | ||
# Semidiscretization of the multilayer shallow water equations with a periodic | ||
# bottom topography function (set in the initial conditions) | ||
|
||
equations = ShallowWaterMultiLayerEquations2D(gravity_constant = 1.1, | ||
rhos = (0.9, 1.0, 1.1)) | ||
|
||
initial_condition = initial_condition_convergence_test | ||
|
||
############################################################################### | ||
# Get the DG approximation space | ||
|
||
volume_flux = (flux_ersing_etal, flux_nonconservative_ersing_etal) | ||
surface_flux = (flux_ersing_etal, flux_nonconservative_ersing_etal) | ||
solver = DGSEM(polydeg = 6, surface_flux = surface_flux, | ||
volume_integral = VolumeIntegralFluxDifferencing(volume_flux)) | ||
|
||
############################################################################### | ||
# This setup is for the curved, split form convergence test on a periodic domain | ||
|
||
# Get the unstructured quad mesh from a file (downloads the file if not available locally) | ||
mesh_file = Trixi.download("https://gist.githubusercontent.com/andrewwinters5000/8f8cd23df27fcd494553f2a89f3c1ba4/raw/85e3c8d976bbe57ca3d559d653087b0889535295/mesh_alfven_wave_with_twist_and_flip.mesh", | ||
joinpath(@__DIR__, "mesh_alfven_wave_with_twist_and_flip.mesh")) | ||
|
||
mesh = UnstructuredMesh2D(mesh_file, periodicity = true) | ||
|
||
# Create the semidiscretization object | ||
semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver, | ||
source_terms = source_terms_convergence_test) | ||
|
||
############################################################################### | ||
# ODE solvers, callbacks etc. | ||
|
||
tspan = (0.0, 1.0) | ||
ode = semidiscretize(semi, tspan) | ||
|
||
summary_callback = SummaryCallback() | ||
|
||
analysis_interval = 500 | ||
analysis_callback = AnalysisCallback(semi, interval = analysis_interval) | ||
|
||
alive_callback = AliveCallback(analysis_interval = analysis_interval) | ||
|
||
save_solution = SaveSolutionCallback(interval = 500, | ||
save_initial_solution = true, | ||
save_final_solution = true) | ||
|
||
stepsize_callback = StepsizeCallback(cfl = 0.9) | ||
|
||
callbacks = CallbackSet(summary_callback, analysis_callback, alive_callback, save_solution, | ||
stepsize_callback) | ||
|
||
############################################################################### | ||
# run the simulation | ||
|
||
sol = solve(ode, CarpenterKennedy2N54(williamson_condition = false), | ||
dt = 1.0, # solve needs some value here but it will be overwritten by the stepsize_callback | ||
save_everystep = false, callback = callbacks); | ||
|
||
summary_callback() # print the timer summary |
Oops, something went wrong.