Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Extend CompressibleEulerQuasi1D and ShallowWaterQuasi1D to DGMulti #1797

Merged
merged 14 commits into from
Jan 4, 2024
50 changes: 50 additions & 0 deletions examples/dgmulti_1d/elixir_euler_quasi_1d.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,50 @@
using OrdinaryDiffEq
using Trixi
using ForwardDiff
jlchan marked this conversation as resolved.
Show resolved Hide resolved

###############################################################################
# Semidiscretization of the quasi 1d compressible Euler equations
# See Chan et al. https://doi.org/10.48550/arXiv.2307.12089 for details

equations = CompressibleEulerEquationsQuasi1D(1.4)

initial_condition = initial_condition_convergence_test

surface_flux = (flux_chan_etal, flux_nonconservative_chan_etal)
volume_flux = surface_flux
dg = DGMulti(polydeg = 4, element_type = Line(), approximation_type = SBP(),
surface_integral = SurfaceIntegralWeakForm(surface_flux),
volume_integral = VolumeIntegralFluxDifferencing(volume_flux))

cells_per_dimension = (8,)
mesh = DGMultiMesh(dg, cells_per_dimension,
coordinates_min = (-1.0,), coordinates_max = (1.0,), periodicity = true)
semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, dg;
source_terms = source_terms_convergence_test)

###############################################################################
# ODE solvers, callbacks etc.

tspan = (0.0, 2.0)
ode = semidiscretize(semi, tspan)

summary_callback = SummaryCallback()

analysis_interval = 100
analysis_callback = AnalysisCallback(semi, interval = analysis_interval, uEltype = real(dg))

alive_callback = AliveCallback(analysis_interval = analysis_interval)
stepsize_callback = StepsizeCallback(cfl = 0.8)

callbacks = CallbackSet(summary_callback,
analysis_callback,
alive_callback,
stepsize_callback)

###############################################################################
# run the simulation

sol = solve(ode, CarpenterKennedy2N54(williamson_condition = false),
dt = 1.0, # solve needs some value here but it will be overwritten by the stepsize_callback
save_everystep = false, callback = callbacks);
summary_callback() # print the timer summary
50 changes: 50 additions & 0 deletions examples/dgmulti_1d/elixir_shallow_water_quasi_1d.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,50 @@
using OrdinaryDiffEq
using Trixi
using ForwardDiff
jlchan marked this conversation as resolved.
Show resolved Hide resolved

###############################################################################
# Semidiscretization of the quasi 1d shallow water equations
# See Chan et al. https://doi.org/10.48550/arXiv.2307.12089 for details

equations = ShallowWaterEquationsQuasi1D(gravity_constant = 9.81)

initial_condition = initial_condition_convergence_test

volume_flux = (flux_chan_etal, flux_nonconservative_chan_etal)
surface_flux = (FluxPlusDissipation(flux_chan_etal, DissipationLocalLaxFriedrichs()),
flux_nonconservative_chan_etal)

dg = DGMulti(polydeg = 4, element_type = Line(), approximation_type = SBP(),
surface_integral = SurfaceIntegralWeakForm(surface_flux),
volume_integral = VolumeIntegralFluxDifferencing(volume_flux))

cells_per_dimension = (8,)
mesh = DGMultiMesh(dg, cells_per_dimension,
coordinates_min = (0.0,), coordinates_max = (sqrt(2),),
periodicity = true)
semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, dg;
source_terms = source_terms_convergence_test)

###############################################################################
# ODE solvers, callbacks etc.

tspan = (0.0, 1.0)
ode = semidiscretize(semi, tspan)

summary_callback = SummaryCallback()

analysis_interval = 100
analysis_callback = AnalysisCallback(semi, interval = analysis_interval, uEltype = real(dg))

alive_callback = AliveCallback(analysis_interval = analysis_interval)

callbacks = CallbackSet(summary_callback,
analysis_callback,
alive_callback)

###############################################################################
# run the simulation

sol = solve(ode, RDPK3SpFSAL49(); abstol = 1.0e-8, reltol = 1.0e-8,
ode_default_options()..., callback = callbacks)
summary_callback() # print the timer summary
24 changes: 24 additions & 0 deletions src/equations/compressible_euler_quasi_1d.jl
Original file line number Diff line number Diff line change
Expand Up @@ -163,6 +163,10 @@ end
"""
@inline function flux_nonconservative_chan_etal(u_ll, u_rr, orientation::Integer,
equations::CompressibleEulerEquationsQuasi1D)
@inline function flux_nonconservative_chan_etal(u_ll, u_rr, normal_direction,
equations::CompressibleEulerEquationsQuasi1D)
@inline function flux_nonconservative_chan_etal(u_ll, u_rr, normal_ll, normal_rr,
equations::CompressibleEulerEquationsQuasi1D)
jlchan marked this conversation as resolved.
Show resolved Hide resolved

Non-symmetric two-point volume flux discretizing the nonconservative (source) term
that contains the gradient of the pressure [`CompressibleEulerEquationsQuasi1D`](@ref)
Expand Down Expand Up @@ -190,6 +194,21 @@ Further details are available in the paper:
return SVector(z, a_ll * p_avg, z, z)
end

@inline function flux_nonconservative_chan_etal(u_ll, u_rr,
normal_direction::AbstractVector,
equations::CompressibleEulerEquationsQuasi1D)
return normal_direction[1] *
flux_nonconservative_chan_etal(u_ll, u_rr, 1, equations)
end

@inline function flux_nonconservative_chan_etal(u_ll, u_rr,
normal_ll::AbstractVector,
normal_rr::AbstractVector,
equations::CompressibleEulerEquationsQuasi1D)
# normal_ll should be equal to normal_rr in 1D
return flux_nonconservative_chan_etal(u_ll, u_rr, normal_ll, equations)
end

"""
@inline function flux_chan_etal(u_ll, u_rr, orientation::Integer,
equations::CompressibleEulerEquationsQuasi1D)
Expand Down Expand Up @@ -230,6 +249,11 @@ Further details are available in the paper:
return SVector(f1, f2, f3, zero(eltype(u_ll)))
end

@inline function flux_chan_etal(u_ll, u_rr, normal_direction::AbstractVector,
equations::CompressibleEulerEquationsQuasi1D)
return normal_direction[1] * flux_chan_etal(u_ll, u_rr, 1, equations)
end

# Calculate estimates for maximum wave speed for local Lax-Friedrichs-type dissipation as the
# maximum velocity magnitude plus the maximum speed of sound
@inline function max_abs_speed_naive(u_ll, u_rr, orientation::Integer,
Expand Down
25 changes: 25 additions & 0 deletions src/equations/shallow_water_quasi_1d.jl
Original file line number Diff line number Diff line change
Expand Up @@ -152,6 +152,11 @@ end
"""
flux_nonconservative_chan_etal(u_ll, u_rr, orientation::Integer,
equations::ShallowWaterEquationsQuasi1D)
flux_nonconservative_chan_etal(u_ll, u_rr, normal_direction::AbstractVector,
equations::ShallowWaterEquationsQuasi1D)
flux_nonconservative_chan_etal(u_ll, u_rr,
normal_ll::AbstractVector, normal_rr::AbstractVector,
equations::ShallowWaterEquationsQuasi1D)

Non-symmetric two-point volume flux discretizing the nonconservative (source) term
that contains the gradient of the bottom topography [`ShallowWaterEquationsQuasi1D`](@ref)
Expand All @@ -176,6 +181,21 @@ Further details are available in the paper:
return SVector(z, equations.gravity * a_ll * h_ll * (h_rr + b_rr), z, z)
end

@inline function flux_nonconservative_chan_etal(u_ll, u_rr,
normal_direction::AbstractVector,
equations::ShallowWaterEquationsQuasi1D)
return normal_direction[1] *
flux_nonconservative_chan_etal(u_ll, u_rr, 1, equations)
end

@inline function flux_nonconservative_chan_etal(u_ll, u_rr,
normal_ll::AbstractVector,
normal_rr::AbstractVector,
equations::ShallowWaterEquationsQuasi1D)
# normal_ll should be equal to normal_rr
return flux_nonconservative_chan_etal(u_ll, u_rr, normal_ll, equations)
end

"""
flux_chan_etal(u_ll, u_rr, orientation,
equations::ShallowWaterEquationsQuasi1D)
Expand Down Expand Up @@ -204,6 +224,11 @@ Further details are available in the paper:
return SVector(f1, f2, zero(eltype(u_ll)), zero(eltype(u_ll)))
end

@inline function flux_chan_etal(u_ll, u_rr, normal_direction::AbstractVector,
equations::ShallowWaterEquationsQuasi1D)
return normal_direction[1] * flux_chan_etal(u_ll, u_rr, 1, equations)
end

# Calculate maximum wave speed for local Lax-Friedrichs-type dissipation as the
# maximum velocity magnitude plus the maximum speed of sound
@inline function max_abs_speed_naive(u_ll, u_rr, orientation::Integer,
Expand Down
53 changes: 53 additions & 0 deletions test/test_dgmulti_1d.jl
Original file line number Diff line number Diff line change
Expand Up @@ -162,6 +162,59 @@ end
@test minimum(dg.basis.rst[1]) ≈ -1
@test maximum(dg.basis.rst[1])≈1 atol=0.35
end

# test non-conservative systems
@trixi_testset "elixir_shallow_water_quasi_1d.jl (SBP) " begin
@test_trixi_include(joinpath(EXAMPLES_DIR, "elixir_shallow_water_quasi_1d.jl"),
cells_per_dimension=(8,),
approximation_type=SBP(),
l2=[
3.03001101100507e-6,
1.692177335948727e-5,
3.002634351734614e-16,
1.1636653574178203e-15,
],
linf=[
1.2043401988570679e-5,
5.346847010329059e-5,
9.43689570931383e-16,
2.220446049250313e-15,
])
# Ensure that we do not have excessive memory allocations
# (e.g., from type instabilities)
let
t = sol.t[end]
u_ode = sol.u[end]
du_ode = similar(u_ode)
@test (@allocated Trixi.rhs!(du_ode, u_ode, semi, t)) < 1000
end
end

@trixi_testset "elixir_euler_quasi_1d.jl (SBP) " begin
@test_trixi_include(joinpath(EXAMPLES_DIR, "elixir_euler_quasi_1d.jl"),
cells_per_dimension=(8,),
approximation_type=SBP(),
l2=[
1.633271343738687e-5,
9.575385661756332e-6,
1.2700331443128421e-5,
0.0,
],
linf=[
7.304984704381567e-5,
5.2365944135601694e-5,
6.469559594934893e-5,
0.0,
])
# Ensure that we do not have excessive memory allocations
# (e.g., from type instabilities)
let
t = sol.t[end]
u_ode = sol.u[end]
du_ode = similar(u_ode)
@test (@allocated Trixi.rhs!(du_ode, u_ode, semi, t)) < 1000
end
end
end

# Clean up afterwards: delete Trixi.jl output directory
Expand Down