Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

HLL Davis wave speeds & Cartesian Flux Winters for polytropic Euler #1733

Merged
Merged
Show file tree
Hide file tree
Changes from 8 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
63 changes: 63 additions & 0 deletions examples/tree_2d_dgsem/elixir_eulerpolytropic_convergence.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,63 @@

using OrdinaryDiffEq
using Trixi

###############################################################################
# semidiscretization of the polytropic Euler equations

gamma = 1.4
kappa = 0.5 # Scaling factor for the pressure.
equations = PolytropicEulerEquations2D(gamma, kappa)

initial_condition = initial_condition_convergence_test

volume_flux = flux_winters_etal
solver = DGSEM(polydeg = 3, surface_flux = FluxHLL(min_max_speed_davis),
volume_integral = VolumeIntegralFluxDifferencing(volume_flux))

coordinates_min = (0.0, 0.0)
coordinates_max = (1.0, 1.0)

# Create a uniformly refined mesh with periodic boundaries
mesh = TreeMesh(coordinates_min, coordinates_max,
initial_refinement_level = 2,
periodicity = true,
n_cells_max = 30_000)

semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver,
source_terms = source_terms_convergence_test)

###############################################################################
# ODE solvers, callbacks etc.

tspan = (0.0, 0.1)
ode = semidiscretize(semi, tspan)

summary_callback = SummaryCallback()

analysis_interval = 100
analysis_callback = AnalysisCallback(semi, interval = analysis_interval,
extra_analysis_errors = (:l2_error_primitive,
:linf_error_primitive))

alive_callback = AliveCallback(analysis_interval = analysis_interval)

save_solution = SaveSolutionCallback(interval = 100,
save_initial_solution = true,
save_final_solution = true,
solution_variables = cons2prim)

stepsize_callback = StepsizeCallback(cfl = 0.1)
DanielDoehring marked this conversation as resolved.
Show resolved Hide resolved

callbacks = CallbackSet(summary_callback,
analysis_callback, alive_callback,
save_solution,
stepsize_callback)

###############################################################################
# run the simulation

sol = solve(ode, CarpenterKennedy2N54(williamson_condition = false),
dt = 1.0, # solve needs some value here but it will be overwritten by the stepsize_callback
save_everystep = false, callback = callbacks);
summary_callback() # print the timer summary
113 changes: 113 additions & 0 deletions src/equations/polytropic_euler_2d.jl
Original file line number Diff line number Diff line change
Expand Up @@ -135,6 +135,26 @@ end
return SVector(f1, f2, f3)
end

# Calculate 2D flux for a single point
DanielDoehring marked this conversation as resolved.
Show resolved Hide resolved
@inline function flux(u, orientation::Integer, equations::PolytropicEulerEquations2D)
_, v1, v2 = cons2prim(u, equations)
p = pressure(u, equations)

rho_v1 = u[2]
rho_v2 = u[3]

if orientation == 1
f1 = rho_v1
f2 = rho_v1 * v1 + p
f3 = rho_v1 * v2
else
f1 = rho_v2
f2 = rho_v2 * v1
f3 = rho_v2 * v2 + p
end
return SVector(f1, f2, f3)
end

"""
flux_winters_etal(u_ll, u_rr, normal_direction,
equations::PolytropicEulerEquations2D)
Expand Down Expand Up @@ -178,6 +198,52 @@ For details see Section 3.2 of the following reference
return SVector(f1, f2, f3)
end

"""
flux_winters_etal(u_ll, u_rr, orientation,
equations::PolytropicEulerEquations2D)

Entropy conserving two-point flux for isothermal or polytropic gases.
Requires a special weighted Stolarsky mean for the evaluation of the density
denoted here as `stolarsky_mean`. Note, for isothermal gases where `gamma = 1`
this `stolarsky_mean` becomes the [`ln_mean`](@ref).

For details see Section 3.2 of the following reference
- Andrew R. Winters, Christof Czernik, Moritz B. Schily & Gregor J. Gassner (2020)
Entropy stable numerical approximations for the isothermal and polytropic
Euler equations
[DOI: 10.1007/s10543-019-00789-w](https://doi.org/10.1007/s10543-019-00789-w)
"""
DanielDoehring marked this conversation as resolved.
Show resolved Hide resolved
@inline function flux_winters_etal(u_ll, u_rr, orientation::Integer,
equations::PolytropicEulerEquations2D)
# Unpack left and right state
rho_ll, v1_ll, v2_ll = cons2prim(u_ll, equations)
rho_rr, v1_rr, v2_rr = cons2prim(u_rr, equations)
p_ll = equations.kappa * rho_ll^equations.gamma
p_rr = equations.kappa * rho_rr^equations.gamma

# Compute the necessary mean values
if equations.gamma == 1.0 # isothermal gas
rho_mean = ln_mean(rho_ll, rho_rr)
else # equations.gamma > 1 # polytropic gas
rho_mean = stolarsky_mean(rho_ll, rho_rr, equations.gamma)
end
v1_avg = 0.5 * (v1_ll + v1_rr)
v2_avg = 0.5 * (v2_ll + v2_rr)
p_avg = 0.5 * (p_ll + p_rr)

if orientation == 1 # x-direction
f1 = rho_mean * 0.5 * (v1_ll + v1_rr)
f2 = f1 * v1_avg + p_avg
f3 = f1 * v2_avg
else # y-direction
f1 = rho_mean * 0.5 * (v2_ll + v2_rr)
f2 = f1 * v1_avg
f3 = f1 * v2_avg + p_avg
end

return SVector(f1, f2, f3)
end

@inline function min_max_speed_naive(u_ll, u_rr, normal_direction::AbstractVector,
equations::PolytropicEulerEquations2D)
rho_ll, v1_ll, v2_ll = cons2prim(u_ll, equations)
Expand All @@ -196,6 +262,53 @@ end
return lambda_min, lambda_max
end

# More refined estimates for minimum and maximum wave speeds for HLL-type fluxes
@inline function min_max_speed_davis(u_ll, u_rr, orientation::Integer,
equations::PolytropicEulerEquations2D)
rho_ll, v1_ll, v2_ll = cons2prim(u_ll, equations)
rho_rr, v1_rr, v2_rr = cons2prim(u_rr, equations)
# Pressure for polytropic Euler
p_ll = equations.kappa * rho_ll^equations.gamma
p_rr = equations.kappa * rho_rr^equations.gamma

c_ll = sqrt(equations.gamma * p_ll / rho_ll)
c_rr = sqrt(equations.gamma * p_rr / rho_rr)

if orientation == 1 # x-direction
λ_min = min(v1_ll - c_ll, v1_rr - c_rr)
λ_max = max(v1_ll + c_ll, v1_rr + c_rr)
else # y-direction
λ_min = min(v2_ll - c_ll, v2_rr - c_rr)
λ_max = max(v2_ll + c_ll, v2_rr + c_rr)
end

return λ_min, λ_max
end

# More refined estimates for minimum and maximum wave speeds for HLL-type fluxes
@inline function min_max_speed_davis(u_ll, u_rr, normal_direction::AbstractVector,
equations::PolytropicEulerEquations2D)
rho_ll, v1_ll, v2_ll = cons2prim(u_ll, equations)
rho_rr, v1_rr, v2_rr = cons2prim(u_rr, equations)
# Pressure for polytropic Euler
p_ll = equations.kappa * rho_ll^equations.gamma
p_rr = equations.kappa * rho_rr^equations.gamma

norm_ = norm(normal_direction)

c_ll = sqrt(equations.gamma * p_ll / rho_ll) * norm_
c_rr = sqrt(equations.gamma * p_rr / rho_rr) * norm_

v_normal_ll = v1_ll * normal_direction[1] + v2_ll * normal_direction[2]
v_normal_rr = v1_rr * normal_direction[1] + v2_rr * normal_direction[2]

# The v_normals are already scaled by the norm
λ_min = min(v_normal_ll - c_ll, v_normal_rr - c_rr)
λ_max = max(v_normal_ll + c_ll, v_normal_rr + c_rr)

return λ_min, λ_max
end

@inline function max_abs_speeds(u, equations::PolytropicEulerEquations2D)
rho, v1, v2 = cons2prim(u, equations)
c = sqrt(equations.gamma * equations.kappa * rho^(equations.gamma - 1))
Expand Down
23 changes: 23 additions & 0 deletions test/test_structured_2d.jl
Original file line number Diff line number Diff line change
Expand Up @@ -598,6 +598,29 @@ end
end
end

@trixi_testset "elixir_eulerpolytropic_convergence.jl: HLL(Davis)" begin
@test_trixi_include(joinpath(EXAMPLES_DIR, "elixir_eulerpolytropic_convergence.jl"),
solver=DGSEM(polydeg = 3,
surface_flux = FluxHLL(min_max_speed_davis),
volume_integral = VolumeIntegralFluxDifferencing(volume_flux)),
l2=[
0.0016689832177644243, 0.0025920263793104445,
0.003281074494629298,
],
linf=[
0.01099488320190023, 0.013309526619350365,
0.02008032661117909,
])
# Ensure that we do not have excessive memory allocations
# (e.g., from type instabilities)
let
t = sol.t[end]
u_ode = sol.u[end]
du_ode = similar(u_ode)
@test (@allocated Trixi.rhs!(du_ode, u_ode, semi, t)) < 1000
end
end

@trixi_testset "elixir_eulerpolytropic_ec.jl" begin
@test_trixi_include(joinpath(EXAMPLES_DIR, "elixir_eulerpolytropic_ec.jl"),
l2=[
Expand Down
35 changes: 35 additions & 0 deletions test/test_tree_2d_eulerpolytropic.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,35 @@
module TestExamples2DEulerMulticomponent

using Test
using Trixi

include("test_trixi.jl")

EXAMPLES_DIR = pkgdir(Trixi, "examples", "tree_2d_dgsem")

@testset "Polytropic Euler" begin
#! format: noindent

@trixi_testset "elixir_eulerpolytropic_convergence.jl" begin
@test_trixi_include(joinpath(EXAMPLES_DIR,
"elixir_eulerpolytropic_convergence.jl"),
l2=[
0.0016689832177626373, 0.0025920263793094526,
0.003281074494626679,
],
linf=[
0.010994883201896677, 0.013309526619350365,
0.02008032661117376,
])
# Ensure that we do not have excessive memory allocations
# (e.g., from type instabilities)
let
t = sol.t[end]
u_ode = sol.u[end]
du_ode = similar(u_ode)
@test (@allocated Trixi.rhs!(du_ode, u_ode, semi, t)) < 1000
end
end
end

end # module
3 changes: 3 additions & 0 deletions test/test_tree_2d_part2.jl
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,9 @@ isdir(outdir) && rm(outdir, recursive = true)
# Compressible Euler Multicomponent
include("test_tree_2d_eulermulti.jl")

# Compressible Polytropic Euler
include("test_tree_2d_eulerpolytropic.jl")

# Compressible Euler coupled with acoustic perturbation equations
include("test_tree_2d_euleracoustics.jl")

Expand Down
48 changes: 48 additions & 0 deletions test/test_unit.jl
Original file line number Diff line number Diff line change
Expand Up @@ -782,6 +782,54 @@ end
end
end

@timed_testset "Consistency check for HLL flux with Davis wave speed estimates: Polytropic CEE" begin
flux_hll = FluxHLL(min_max_speed_davis)

gamma = 1.4
kappa = 0.5 # Scaling factor for the pressure.
equations = PolytropicEulerEquations2D(gamma, kappa)
u = SVector(1.1, -0.5, 2.34)

orientations = [1, 2]
for orientation in orientations
@test flux_hll(u, u, orientation, equations) ≈ flux(u, orientation, equations)
end

normal_directions = [SVector(1.0, 0.0),
SVector(0.0, 1.0),
SVector(0.5, -0.5),
SVector(-1.2, 0.3)]

for normal_direction in normal_directions
@test flux_hll(u, u, normal_direction, equations) ≈
flux(u, normal_direction, equations)
end
end

@timed_testset "Consistency check for Winters flux: Polytropic CEE" begin
for gamma in [1.4, 1.0, 5 / 3]
kappa = 0.5 # Scaling factor for the pressure.
equations = PolytropicEulerEquations2D(gamma, kappa)
u = SVector(1.1, -0.5, 2.34)

orientations = [1, 2]
for orientation in orientations
@test flux_winters_etal(u, u, orientation, equations) ≈
flux(u, orientation, equations)
end

normal_directions = [SVector(1.0, 0.0),
SVector(0.0, 1.0),
SVector(0.5, -0.5),
SVector(-1.2, 0.3)]

for normal_direction in normal_directions
@test flux_winters_etal(u, u, normal_direction, equations) ≈
flux(u, normal_direction, equations)
end
end
end

@timed_testset "Consistency check for HLL flux with Davis wave speed estimates: LEE" begin
flux_hll = FluxHLL(min_max_speed_davis)

Expand Down