Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Adding primitive variable Dirichlet BCs for Navier-Stokes parabolic terms for P4estMesh{2} #1553

Merged
merged 13 commits into from
Oct 8, 2023
215 changes: 215 additions & 0 deletions examples/p4est_2d_dgsem/elixir_navierstokes_convergence_nonperiodic.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,215 @@
using OrdinaryDiffEq
using Trixi

###############################################################################
# semidiscretization of the ideal compressible Navier-Stokes equations

prandtl_number() = 0.72
mu() = 0.01

equations = CompressibleEulerEquations2D(1.4)
equations_parabolic = CompressibleNavierStokesDiffusion2D(equations, mu=mu(), Prandtl=prandtl_number(),
gradient_variables=GradientVariablesPrimitive())

# Create DG solver with polynomial degree = 3 and (local) Lax-Friedrichs/Rusanov flux as surface flux
solver = DGSEM(polydeg=3, surface_flux=flux_lax_friedrichs,
volume_integral=VolumeIntegralWeakForm())

coordinates_min = (-1.0, -1.0) # minimum coordinates (min(x), min(y))
coordinates_max = ( 1.0, 1.0) # maximum coordinates (max(x), max(y))

trees_per_dimension = (4, 4)
mesh = P4estMesh(trees_per_dimension,
polydeg=3, initial_refinement_level=2,
coordinates_min=coordinates_min, coordinates_max=coordinates_max,
periodicity=(false, false))

# Note: the initial condition cannot be specialized to `CompressibleNavierStokesDiffusion2D`
# since it is called by both the parabolic solver (which passes in `CompressibleNavierStokesDiffusion2D`)
# and by the initial condition (which passes in `CompressibleEulerEquations2D`).
# This convergence test setup was originally derived by Andrew Winters (@andrewwinters5000)
function initial_condition_navier_stokes_convergence_test(x, t, equations)
# Amplitude and shift
A = 0.5
c = 2.0

# convenience values for trig. functions
pi_x = pi * x[1]
pi_y = pi * x[2]
pi_t = pi * t

rho = c + A * sin(pi_x) * cos(pi_y) * cos(pi_t)
v1 = sin(pi_x) * log(x[2] + 2.0) * (1.0 - exp(-A * (x[2] - 1.0)) ) * cos(pi_t)
v2 = v1
p = rho^2

return prim2cons(SVector(rho, v1, v2, p), equations)
end

@inline function source_terms_navier_stokes_convergence_test(u, x, t, equations)
y = x[2]

# TODO: parabolic
# we currently need to hardcode these parameters until we fix the "combined equation" issue
# see also https://github.com/trixi-framework/Trixi.jl/pull/1160
inv_gamma_minus_one = inv(equations.gamma - 1)
Pr = prandtl_number()
mu_ = mu()

# Same settings as in `initial_condition`
# Amplitude and shift
A = 0.5
c = 2.0

# convenience values for trig. functions
pi_x = pi * x[1]
pi_y = pi * x[2]
pi_t = pi * t

# compute the manufactured solution and all necessary derivatives
rho = c + A * sin(pi_x) * cos(pi_y) * cos(pi_t)
rho_t = -pi * A * sin(pi_x) * cos(pi_y) * sin(pi_t)
rho_x = pi * A * cos(pi_x) * cos(pi_y) * cos(pi_t)
rho_y = -pi * A * sin(pi_x) * sin(pi_y) * cos(pi_t)
rho_xx = -pi * pi * A * sin(pi_x) * cos(pi_y) * cos(pi_t)
rho_yy = -pi * pi * A * sin(pi_x) * cos(pi_y) * cos(pi_t)

v1 = sin(pi_x) * log(y + 2.0) * (1.0 - exp(-A * (y - 1.0))) * cos(pi_t)
v1_t = -pi * sin(pi_x) * log(y + 2.0) * (1.0 - exp(-A * (y - 1.0))) * sin(pi_t)
v1_x = pi * cos(pi_x) * log(y + 2.0) * (1.0 - exp(-A * (y - 1.0))) * cos(pi_t)
v1_y = sin(pi_x) * (A * log(y + 2.0) * exp(-A * (y - 1.0)) + (1.0 - exp(-A * (y - 1.0))) / (y + 2.0)) * cos(pi_t)
v1_xx = -pi * pi * sin(pi_x) * log(y + 2.0) * (1.0 - exp(-A * (y - 1.0))) * cos(pi_t)
v1_xy = pi * cos(pi_x) * (A * log(y + 2.0) * exp(-A * (y - 1.0)) + (1.0 - exp(-A * (y - 1.0))) / (y + 2.0)) * cos(pi_t)
v1_yy = (sin(pi_x) * ( 2.0 * A * exp(-A * (y - 1.0)) / (y + 2.0)
- A * A * log(y + 2.0) * exp(-A * (y - 1.0))
- (1.0 - exp(-A * (y - 1.0))) / ((y + 2.0) * (y + 2.0))) * cos(pi_t))
v2 = v1
v2_t = v1_t
v2_x = v1_x
v2_y = v1_y
v2_xx = v1_xx
v2_xy = v1_xy
v2_yy = v1_yy

p = rho * rho
p_t = 2.0 * rho * rho_t
p_x = 2.0 * rho * rho_x
p_y = 2.0 * rho * rho_y
p_xx = 2.0 * rho * rho_xx + 2.0 * rho_x * rho_x
p_yy = 2.0 * rho * rho_yy + 2.0 * rho_y * rho_y

# Note this simplifies slightly because the ansatz assumes that v1 = v2
E = p * inv_gamma_minus_one + 0.5 * rho * (v1^2 + v2^2)
E_t = p_t * inv_gamma_minus_one + rho_t * v1^2 + 2.0 * rho * v1 * v1_t
E_x = p_x * inv_gamma_minus_one + rho_x * v1^2 + 2.0 * rho * v1 * v1_x
E_y = p_y * inv_gamma_minus_one + rho_y * v1^2 + 2.0 * rho * v1 * v1_y

# Some convenience constants
T_const = equations.gamma * inv_gamma_minus_one / Pr
inv_rho_cubed = 1.0 / (rho^3)

# compute the source terms
# density equation
du1 = rho_t + rho_x * v1 + rho * v1_x + rho_y * v2 + rho * v2_y

# x-momentum equation
du2 = ( rho_t * v1 + rho * v1_t + p_x + rho_x * v1^2
+ 2.0 * rho * v1 * v1_x
+ rho_y * v1 * v2
+ rho * v1_y * v2
+ rho * v1 * v2_y
# stress tensor from x-direction
- 4.0 / 3.0 * v1_xx * mu_
+ 2.0 / 3.0 * v2_xy * mu_
- v1_yy * mu_
- v2_xy * mu_ )
# y-momentum equation
du3 = ( rho_t * v2 + rho * v2_t + p_y + rho_x * v1 * v2
+ rho * v1_x * v2
+ rho * v1 * v2_x
+ rho_y * v2^2
+ 2.0 * rho * v2 * v2_y
# stress tensor from y-direction
- v1_xy * mu_
- v2_xx * mu_
- 4.0 / 3.0 * v2_yy * mu_
+ 2.0 / 3.0 * v1_xy * mu_ )
# total energy equation
du4 = ( E_t + v1_x * (E + p) + v1 * (E_x + p_x)
+ v2_y * (E + p) + v2 * (E_y + p_y)
# stress tensor and temperature gradient terms from x-direction
- 4.0 / 3.0 * v1_xx * v1 * mu_
+ 2.0 / 3.0 * v2_xy * v1 * mu_
- 4.0 / 3.0 * v1_x * v1_x * mu_
+ 2.0 / 3.0 * v2_y * v1_x * mu_
- v1_xy * v2 * mu_
- v2_xx * v2 * mu_
- v1_y * v2_x * mu_
- v2_x * v2_x * mu_
- T_const * inv_rho_cubed * ( p_xx * rho * rho
- 2.0 * p_x * rho * rho_x
+ 2.0 * p * rho_x * rho_x
- p * rho * rho_xx ) * mu_
# stress tensor and temperature gradient terms from y-direction
- v1_yy * v1 * mu_
- v2_xy * v1 * mu_
- v1_y * v1_y * mu_
- v2_x * v1_y * mu_
- 4.0 / 3.0 * v2_yy * v2 * mu_
+ 2.0 / 3.0 * v1_xy * v2 * mu_
- 4.0 / 3.0 * v2_y * v2_y * mu_
+ 2.0 / 3.0 * v1_x * v2_y * mu_
- T_const * inv_rho_cubed * ( p_yy * rho * rho
- 2.0 * p_y * rho * rho_y
+ 2.0 * p * rho_y * rho_y
- p * rho * rho_yy ) * mu_ )

return SVector(du1, du2, du3, du4)
end

initial_condition = initial_condition_navier_stokes_convergence_test

# BC types
velocity_bc_top_bottom = NoSlip((x, t, equations) -> initial_condition_navier_stokes_convergence_test(x, t, equations)[2:3])
heat_bc_top_bottom = Adiabatic((x, t, equations) -> 0.0)
boundary_condition_top_bottom = BoundaryConditionNavierStokesWall(velocity_bc_top_bottom, heat_bc_top_bottom)

boundary_condition_left_right = BoundaryConditionDirichlet(initial_condition_navier_stokes_convergence_test)

# define inviscid boundary conditions
boundary_conditions = Dict(:x_neg => boundary_condition_left_right,
:x_pos => boundary_condition_left_right,
:y_neg => boundary_condition_slip_wall,
:y_pos => boundary_condition_slip_wall)

# define viscous boundary conditions
boundary_conditions_parabolic = Dict(:x_neg => boundary_condition_left_right,
:x_pos => boundary_condition_left_right,
:y_neg => boundary_condition_top_bottom,
:y_pos => boundary_condition_top_bottom)

semi = SemidiscretizationHyperbolicParabolic(mesh, (equations, equations_parabolic), initial_condition, solver;
boundary_conditions=(boundary_conditions, boundary_conditions_parabolic),
source_terms=source_terms_navier_stokes_convergence_test)

# ###############################################################################
# # ODE solvers, callbacks etc.

# Create ODE problem with time span `tspan`
tspan = (0.0, 0.5)
ode = semidiscretize(semi, tspan)

summary_callback = SummaryCallback()
alive_callback = AliveCallback(alive_interval=10)
analysis_interval = 100
analysis_callback = AnalysisCallback(semi, interval=analysis_interval)
callbacks = CallbackSet(summary_callback, alive_callback, analysis_callback)

###############################################################################
# run the simulation

time_int_tol = 1e-8
sol = solve(ode, RDPK3SpFSAL49(); abstol=time_int_tol, reltol=time_int_tol, dt = 1e-5,
ode_default_options()..., callback=callbacks)
summary_callback() # print the timer summary

29 changes: 29 additions & 0 deletions src/equations/compressible_navier_stokes_2d.jl
Original file line number Diff line number Diff line change
Expand Up @@ -489,3 +489,32 @@ end
})
return SVector(flux_inner[1], flux_inner[2], flux_inner[3], flux_inner[4])
end

# Dirichlet Boundary Condition for P4est mesh

@inline function (boundary_condition::BoundaryConditionDirichlet)(flux_inner,
u_inner,
normal::AbstractVector,
x, t,
operator_type::Gradient,
equations::CompressibleNavierStokesDiffusion2D{
GradientVariablesPrimitive
})
# BCs are usually specified as conservative variables so we convert them to primitive variables
# because the gradients are assumed to be with respect to the primitive variables
u_boundary = boundary_condition.boundary_value_function(x, t, equations)

return cons2prim(u_boundary, equations)
end

@inline function (boundary_condition::BoundaryConditionDirichlet)(flux_inner,
u_inner,
normal::AbstractVector,
x, t,
operator_type::Divergence,
equations::CompressibleNavierStokesDiffusion2D{
GradientVariablesPrimitive
})
# for Dirichlet boundary conditions, we do not impose any conditions on the viscous fluxes
return flux_inner
apey236 marked this conversation as resolved.
Show resolved Hide resolved
end
8 changes: 8 additions & 0 deletions test/test_parabolic_2d.jl
Original file line number Diff line number Diff line change
Expand Up @@ -224,6 +224,14 @@ isdir(outdir) && rm(outdir, recursive=true)
)
end

@trixi_testset "P4estMesh2D: elixir_navierstokes_convergence_nonperiodic.jl" begin
@test_trixi_include(joinpath(examples_dir(), "p4est_2d_dgsem", "elixir_navierstokes_convergence_nonperiodic.jl"),
initial_refinement_level = 1, tspan=(0.0, 0.2),
l2 = [0.00040364962558511795, 0.0005869762481506936, 0.00091488537427274, 0.0011984191566376762],
linf = [0.0024993634941723464, 0.009487866203944725, 0.004505829506628117, 0.011634902776245681]
)
end

@trixi_testset "P4estMesh2D: elixir_navierstokes_lid_driven_cavity.jl" begin
@test_trixi_include(joinpath(examples_dir(), "p4est_2d_dgsem", "elixir_navierstokes_lid_driven_cavity.jl"),
initial_refinement_level = 2, tspan=(0.0, 0.5),
Expand Down