Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Viscous terms from entropy gradients #1202

Merged
merged 19 commits into from
Sep 6, 2022
Merged
Show file tree
Hide file tree
Changes from 15 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion examples/dgmulti_2d/elixir_navier_stokes_convergence.jl
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@ equations = CompressibleEulerEquations2D(1.4)
# Note: If you change the Navier-Stokes parameters here, also change them in the initial condition
# I really do not like this structure but it should work for now
equations_parabolic = CompressibleNavierStokesDiffusion2D(equations, Reynolds=reynolds_number(), Prandtl=prandtl_number(),
Mach_freestream=0.5)
Mach_freestream=0.5, gradient_variables=GradientVariablesPrimitive())

# Create DG solver with polynomial degree = 3 and (local) Lax-Friedrichs/Rusanov flux as surface flux
dg = DGMulti(polydeg = 3, element_type = Tri(), approximation_type = Polynomial(),
Expand Down
2 changes: 1 addition & 1 deletion examples/tree_2d_dgsem/elixir_navier_stokes_convergence.jl
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@ prandtl_number() = 0.72

equations = CompressibleEulerEquations2D(1.4)
equations_parabolic = CompressibleNavierStokesDiffusion2D(equations, Reynolds=reynolds_number(), Prandtl=prandtl_number(),
Mach_freestream=0.5)
Mach_freestream=0.5, gradient_variables=GradientVariablesPrimitive())

# Create DG solver with polynomial degree = 3 and (local) Lax-Friedrichs/Rusanov flux as surface flux
solver = DGSEM(polydeg=3, surface_flux=flux_lax_friedrichs,
Expand Down
194 changes: 194 additions & 0 deletions examples/tree_2d_dgsem/elixir_navier_stokes_convergence_periodic.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,194 @@
using OrdinaryDiffEq
using Trixi

jlchan marked this conversation as resolved.
Show resolved Hide resolved
###############################################################################
# semidiscretization of the ideal compressible Navier-Stokes equations

reynolds_number() = 100
prandtl_number() = 0.72

equations = CompressibleEulerEquations2D(2.0)
equations_parabolic = CompressibleNavierStokesDiffusion2D(equations, Reynolds=reynolds_number(), Prandtl=prandtl_number(),
Mach_freestream=0.5)

# Create DG solver with polynomial degree = 3 and (local) Lax-Friedrichs/Rusanov flux as surface flux
# solver = DGSEM(polydeg=3, surface_flux=flux_lax_friedrichs,
# volume_integral=VolumeIntegralWeakForm())

volume_flux = flux_ranocha
solver = DGSEM(polydeg=3, surface_flux=flux_hll,
volume_integral=VolumeIntegralFluxDifferencing(volume_flux))

coordinates_min = (-1.0, -1.0) # minimum coordinates (min(x), min(y))
coordinates_max = ( 1.0, 1.0) # maximum coordinates (max(x), max(y))

# Create a uniformly refined mesh with periodic boundaries
mesh = TreeMesh(coordinates_min, coordinates_max,
initial_refinement_level=3,
n_cells_max=30_000) # set maximum capacity of tree data structure

# Note: the initial condition cannot be specialized to `CompressibleNavierStokesDiffusion2D`
# since it is called by both the parabolic solver (which passes in `CompressibleNavierStokesDiffusion2D`)
# and by the initial condition (which passes in `CompressibleEulerEquations2D`).
# This convergence test setup was originally derived by Andrew Winters (@andrewwinters5000)
function initial_condition_navier_stokes_convergence_test_periodic(x, t, equations)
# Amplitude and shift
A = 0.2
c = 2.0

# convenience values for trig. functions
alpha = pi * ( x[1] + x[2] - t )

rho = c + A * sin(alpha)
v1 = 1.0
v2 = 1.0
p = rho^2

return prim2cons(SVector(rho, v1, v2, p), equations)
end

@inline function source_terms_navier_stokes_convergence_test_periodic(u, x, t, equations)
# For this manufactured solution ansatz the following terms are zero
# u_t = v_t =u_x = v_x = u_y = v_x = u_xx = u_xy = u_yy = v_xx = v_xy = v_yy = 0

# TODO: parabolic
# we currently need to hardcode these parameters until we fix the "combined equation" issue
# see also https://github.com/trixi-framework/Trixi.jl/pull/1160
inv_gamma_minus_one = inv(equations.gamma - 1)
Pr = prandtl_number()
Re = reynolds_number()

# Same settings as in `initial_condition`
# Amplitude and shift
A = 0.2
c = 2.0

# convenience values for trig. functions
alpha = pi * ( x[1] + x[2] - t )

# compute the manufactured solution and all necessary derivatives
rho = c + A * sin(alpha)
rho_x = pi * A * cos(alpha)
rho_t = -rho_x
rho_y = rho_x
rho_xx = -pi * pi * A * sin(alpha)
rho_yy = rho_xx

v1 = 1.0
v1_t = 0.0
v1_x = 0.0
v1_y = 0.0
v1_xx = 0.0
v1_xy = 0.0
v1_yy = 0.0

v2 = v1
v2_t = v1_t
v2_x = v1_x
v2_y = v1_y
v2_xx = v1_xx
v2_xy = v1_xy
v2_yy = v1_yy

p = rho * rho
p_x = 2.0 * rho * rho_x
p_y = p_x
p_xx = 2.0 * rho * rho_xx + 2.0 * rho_x * rho_x
p_yy = p_xx

# Note this simplifies slightly because the ansatz assumes that v1 = v2
E = p + rho
E_x = p_x + rho_x
E_y = E_x
E_t = -E_x

# Some convenience constants
T_const = equations.gamma * inv_gamma_minus_one / Pr
inv_Re = 1.0 / Re
inv_rho_cubed = 1.0 / (rho^3)

# compute the source terms
# density equation
du1 = rho_t + rho_x * v1 + rho * v1_x + rho_y * v2 + rho * v2_y

# x-momentum equation
du2 = ( rho_t * v1 + rho * v1_t + p_x + rho_x * v1^2
+ 2.0 * rho * v1 * v1_x
+ rho_y * v1 * v2
+ rho * v1_y * v2
+ rho * v1 * v2_y
# stress tensor from x-direction
- 4.0 / 3.0 * v1_xx * inv_Re
+ 2.0 / 3.0 * v2_xy * inv_Re
- v1_yy * inv_Re
- v2_xy * inv_Re )
# y-momentum equation
du3 = ( rho_t * v2 + rho * v2_t + p_y + rho_x * v1 * v2
+ rho * v1_x * v2
+ rho * v1 * v2_x
+ rho_y * v2^2
+ 2.0 * rho * v2 * v2_y
# stress tensor from y-direction
- v1_xy * inv_Re
- v2_xx * inv_Re
- 4.0 / 3.0 * v2_yy * inv_Re
+ 2.0 / 3.0 * v1_xy * inv_Re )
# total energy equation
du4 = ( E_t + v1_x * (E + p) + v1 * (E_x + p_x)
+ v2_y * (E + p) + v2 * (E_y + p_y)
# stress tensor and temperature gradient terms from x-direction
- 4.0 / 3.0 * v1_xx * v1 * inv_Re
+ 2.0 / 3.0 * v2_xy * v1 * inv_Re
- 4.0 / 3.0 * v1_x * v1_x * inv_Re
+ 2.0 / 3.0 * v2_y * v1_x * inv_Re
- v1_xy * v2 * inv_Re
- v2_xx * v2 * inv_Re
- v1_y * v2_x * inv_Re
- v2_x * v2_x * inv_Re
- T_const * inv_rho_cubed * ( p_xx * rho * rho
- 2.0 * p_x * rho * rho_x
+ 2.0 * p * rho_x * rho_x
- p * rho * rho_xx ) * inv_Re
# stress tensor and temperature gradient terms from y-direction
- v1_yy * v1 * inv_Re
- v2_xy * v1 * inv_Re
- v1_y * v1_y * inv_Re
- v2_x * v1_y * inv_Re
- 4.0 / 3.0 * v2_yy * v2 * inv_Re
+ 2.0 / 3.0 * v1_xy * v2 * inv_Re
- 4.0 / 3.0 * v2_y * v2_y * inv_Re
+ 2.0 / 3.0 * v1_x * v2_y * inv_Re
- T_const * inv_rho_cubed * ( p_yy * rho * rho
- 2.0 * p_y * rho * rho_y
+ 2.0 * p * rho_y * rho_y
- p * rho * rho_yy ) * inv_Re )

return SVector(du1, du2, du3, du4)
end

initial_condition = initial_condition_navier_stokes_convergence_test_periodic

semi = SemidiscretizationHyperbolicParabolic(mesh, (equations, equations_parabolic), initial_condition, solver;
source_terms=source_terms_navier_stokes_convergence_test_periodic)

###############################################################################
# ODE solvers, callbacks etc.

# Create ODE problem with time span `tspan`
tspan = (0.0, 1.0)
ode = semidiscretize(semi, tspan)

summary_callback = SummaryCallback()
alive_callback = AliveCallback(alive_interval=10)
analysis_interval = 100
analysis_callback = AnalysisCallback(semi, interval=analysis_interval)
callbacks = CallbackSet(summary_callback, alive_callback, analysis_callback)

###############################################################################
# run the simulation

time_int_tol = 1e-8
sol = solve(ode, RDPK3SpFSAL49(), abstol=time_int_tol, reltol=time_int_tol, dt = 1e-5,
save_everystep=false, callback=callbacks)
summary_callback() # print the timer summary

75 changes: 75 additions & 0 deletions examples/tree_2d_dgsem/elixir_navier_stokes_es.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,75 @@
using OrdinaryDiffEq
using Trixi

jlchan marked this conversation as resolved.
Show resolved Hide resolved
###############################################################################
# semidiscretization of the ideal compressible Navier-Stokes equations

reynolds_number() = 1600
prandtl_number() = 0.72

equations = CompressibleEulerEquations2D(1.4)
equations_parabolic = CompressibleNavierStokesDiffusion2D(equations, Reynolds=reynolds_number(), Prandtl=prandtl_number(),
Mach_freestream=0.5)

# TODO: For entropy stability testing
volume_flux = flux_ranocha
solver = DGSEM(polydeg=3, surface_flux=flux_lax_friedrichs,
volume_integral=VolumeIntegralFluxDifferencing(volume_flux))

coordinates_min = (-2.0, -2.0) # minimum coordinates (min(x), min(y))
coordinates_max = ( 2.0, 2.0) # maximum coordinates (max(x), max(y))

# Create a uniformly refined mesh with periodic boundaries
mesh = TreeMesh(coordinates_min, coordinates_max,
initial_refinement_level=4,
n_cells_max=30_000) # set maximum capacity of tree data structure

function initial_condition_blast_wave(x, t, equations)
# Set up polar coordinates
inicenter = SVector(0.0, 0.0)
x_norm = x[1] - inicenter[1]
y_norm = x[2] - inicenter[2]
r = sqrt(x_norm^2 + y_norm^2)
phi = atan(y_norm, x_norm)
sin_phi, cos_phi = sincos(phi)

# Calculate primitive variables
rho = r > 0.5 ? 1.0 : 2.0
v1 = r > 0.5 ? 0.0 : 0.2 * cos_phi
v2 = r > 0.5 ? 0.0 : 0.2 * sin_phi
p = r > 0.5 ? 1.0 : 3.0

return prim2cons(SVector(rho, v1, v2, p), equations)
end

initial_condition = initial_condition_blast_wave

semi = SemidiscretizationHyperbolicParabolic(mesh, (equations, equations_parabolic), initial_condition, solver)

###############################################################################
# ODE solvers, callbacks etc.

# Create ODE problem with time span `tspan`
tspan = (0.0, 3.0)
ode = semidiscretize(semi, tspan)

summary_callback = SummaryCallback()
alive_callback = AliveCallback(alive_interval=10)
analysis_interval = 100
analysis_callback = AnalysisCallback(semi, interval=analysis_interval)

save_solution = SaveSolutionCallback(interval=100,
save_initial_solution=true,
save_final_solution=true,
solution_variables=cons2prim)

callbacks = CallbackSet(summary_callback, alive_callback, analysis_callback, save_solution)

###############################################################################
# run the simulation

time_int_tol = 1e-8
sol = solve(ode, RDPK3SpFSAL49(), abstol=time_int_tol, reltol=time_int_tol, dt = 1e-5,
save_everystep=false, callback=callbacks)
summary_callback() # print the timer summary

2 changes: 2 additions & 0 deletions src/Trixi.jl
Original file line number Diff line number Diff line change
Expand Up @@ -137,6 +137,8 @@ export AcousticPerturbationEquations2D,
export LaplaceDiffusion2D,
CompressibleNavierStokesDiffusion2D

export GradientVariablesPrimitive, GradientVariablesEntropy

export flux, flux_central, flux_lax_friedrichs, flux_hll, flux_hllc, flux_hlle, flux_godunov,
flux_chandrashekar, flux_ranocha, flux_derigs_etal, flux_hindenlang_gassner,
flux_nonconservative_powell,
Expand Down
Loading