-
Notifications
You must be signed in to change notification settings - Fork 112
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
6e4f1d1
commit dc794f9
Showing
3 changed files
with
109 additions
and
111 deletions.
There are no files selected for viewing
111 changes: 0 additions & 111 deletions
111
examples/p4est_2d_dgsem/elixir_navierstokes_blast_wave_sutherland.jl
This file was deleted.
Oops, something went wrong.
91 changes: 91 additions & 0 deletions
91
examples/tree_2d_dgsem/elixir_navierstokes_taylor_green_vortex_sutherland.jl
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,91 @@ | ||
|
||
using OrdinaryDiffEq | ||
using Trixi | ||
|
||
############################################################################### | ||
# semidiscretization of the compressible Navier-Stokes equations | ||
|
||
# TODO: parabolic; unify names of these accessor functions | ||
prandtl_number() = 0.72 | ||
|
||
# Use Sutherland's law for a temperature-dependent viscosity | ||
@inline function mu(u, equations) | ||
T_ref = 291.15 | ||
|
||
R_specific_air = 287.052874 | ||
T = R_specific_air * Trixi.temperature(u, equations) | ||
|
||
C_air = 120.0 | ||
mu0_air = 18.27e-6 | ||
|
||
return mu0_air * (T_ref + C_air) / (T + C_air) * (T / T_ref)^1.5 | ||
end | ||
|
||
equations = CompressibleEulerEquations2D(1.4) | ||
equations_parabolic = CompressibleNavierStokesDiffusion2D(equations, mu = mu, | ||
Prandtl = prandtl_number()) | ||
|
||
""" | ||
initial_condition_taylor_green_vortex(x, t, equations::CompressibleEulerEquations2D) | ||
The classical viscous Taylor-Green vortex in 2D. | ||
This forms the basis behind the 3D case found for instance in | ||
- Jonathan R. Bull and Antony Jameson | ||
Simulation of the Compressible Taylor Green Vortex using High-Order Flux Reconstruction Schemes | ||
[DOI: 10.2514/6.2014-3210](https://doi.org/10.2514/6.2014-3210) | ||
""" | ||
function initial_condition_taylor_green_vortex(x, t, | ||
equations::CompressibleEulerEquations2D) | ||
A = 1.0 # magnitude of speed | ||
Ms = 0.1 # maximum Mach number | ||
|
||
rho = 1.0 | ||
v1 = A * sin(x[1]) * cos(x[2]) | ||
v2 = -A * cos(x[1]) * sin(x[2]) | ||
p = (A / Ms)^2 * rho / equations.gamma # scaling to get Ms | ||
p = p + 1.0 / 4.0 * A^2 * rho * (cos(2 * x[1]) + cos(2 * x[2])) | ||
|
||
return prim2cons(SVector(rho, v1, v2, p), equations) | ||
end | ||
initial_condition = initial_condition_taylor_green_vortex | ||
|
||
volume_flux = flux_ranocha | ||
solver = DGSEM(polydeg = 3, surface_flux = flux_hllc, | ||
volume_integral = VolumeIntegralFluxDifferencing(volume_flux)) | ||
|
||
coordinates_min = (-1.0, -1.0) .* pi | ||
coordinates_max = (1.0, 1.0) .* pi | ||
mesh = TreeMesh(coordinates_min, coordinates_max, | ||
initial_refinement_level = 4, | ||
n_cells_max = 100_000) | ||
|
||
semi = SemidiscretizationHyperbolicParabolic(mesh, (equations, equations_parabolic), | ||
initial_condition, solver) | ||
|
||
############################################################################### | ||
# ODE solvers, callbacks etc. | ||
|
||
tspan = (0.0, 20.0) | ||
ode = semidiscretize(semi, tspan) | ||
|
||
summary_callback = SummaryCallback() | ||
|
||
analysis_interval = 100 | ||
analysis_callback = AnalysisCallback(semi, interval = analysis_interval, | ||
save_analysis = true, | ||
extra_analysis_integrals = (energy_kinetic, | ||
energy_internal)) | ||
|
||
alive_callback = AliveCallback(analysis_interval = analysis_interval) | ||
|
||
callbacks = CallbackSet(summary_callback, | ||
analysis_callback, | ||
alive_callback) | ||
|
||
############################################################################### | ||
# run the simulation | ||
|
||
time_int_tol = 1e-9 | ||
sol = solve(ode, RDPK3SpFSAL49(); abstol = time_int_tol, reltol = time_int_tol, | ||
ode_default_options()..., callback = callbacks) | ||
summary_callback() # print the timer summary |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters