-
Notifications
You must be signed in to change notification settings - Fork 114
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'main' into multi_ion_mhd
- Loading branch information
Showing
6 changed files
with
457 additions
and
4 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,61 @@ | ||
using OrdinaryDiffEq | ||
using Trixi | ||
|
||
############################################################################### | ||
# semidiscretization of the linear advection equation | ||
|
||
advection_velocity = (0.2, -0.7, 0.5) | ||
equations = LinearScalarAdvectionEquation3D(advection_velocity) | ||
|
||
# Create DG solver with polynomial degree = 3 and (local) Lax-Friedrichs/Rusanov flux as surface flux | ||
solver = DGSEM(polydeg = 3, surface_flux = flux_lax_friedrichs) | ||
|
||
initial_condition = initial_condition_convergence_test | ||
|
||
boundary_condition = BoundaryConditionDirichlet(initial_condition) | ||
boundary_conditions = Dict(:inside => boundary_condition, | ||
:outside => boundary_condition) | ||
|
||
# Note that the first argument refers to the level of refinement, unlike in for p4est | ||
mesh = Trixi.T8codeMeshCubedSphere(5, 3, 0.5, 0.5; | ||
polydeg = 3, initial_refinement_level = 0) | ||
|
||
# A semidiscretization collects data structures and functions for the spatial discretization | ||
semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver, | ||
boundary_conditions = boundary_conditions) | ||
|
||
############################################################################### | ||
# ODE solvers, callbacks etc. | ||
|
||
# Create ODE problem with time span from 0.0 to 1.0 | ||
tspan = (0.0, 1.0) | ||
ode = semidiscretize(semi, tspan) | ||
|
||
# At the beginning of the main loop, the SummaryCallback prints a summary of the simulation setup | ||
# and resets the timers | ||
summary_callback = SummaryCallback() | ||
|
||
# The AnalysisCallback allows to analyse the solution in regular intervals and prints the results | ||
analysis_callback = AnalysisCallback(semi, interval = 100) | ||
|
||
# The SaveSolutionCallback allows to save the solution to a file in regular intervals | ||
save_solution = SaveSolutionCallback(interval = 100, | ||
solution_variables = cons2prim) | ||
|
||
# The StepsizeCallback handles the re-calculation of the maximum Δt after each time step | ||
stepsize_callback = StepsizeCallback(cfl = 1.2) | ||
|
||
# Create a CallbackSet to collect all callbacks such that they can be passed to the ODE solver | ||
callbacks = CallbackSet(summary_callback, analysis_callback, save_solution, | ||
stepsize_callback) | ||
|
||
############################################################################### | ||
# run the simulation | ||
|
||
# OrdinaryDiffEq's `solve` method evolves the solution in time and executes the passed callbacks | ||
sol = solve(ode, CarpenterKennedy2N54(williamson_condition = false), | ||
dt = 1.0, # solve needs some value here but it will be overwritten by the stepsize_callback | ||
save_everystep = false, callback = callbacks); | ||
|
||
# Print the timer summary | ||
summary_callback() |
299 changes: 299 additions & 0 deletions
299
examples/t8code_3d_dgsem/elixir_euler_baroclinic_instability.jl
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,299 @@ | ||
# An idealized baroclinic instability test case | ||
# For optimal results consider increasing the resolution to 16x16x8 trees per cube face. | ||
# | ||
# Note that this elixir can take several hours to run. | ||
# Using 24 threads of an AMD Ryzen Threadripper 3990X (more threads don't speed it up further) | ||
# and `check-bounds=no`, this elixirs takes about one hour to run. | ||
# With 16x16x8 trees per cube face on the same machine, it takes about 28 hours. | ||
# | ||
# References: | ||
# - Paul A. Ullrich, Thomas Melvin, Christiane Jablonowski, Andrew Staniforth (2013) | ||
# A proposed baroclinic wave test case for deep- and shallow-atmosphere dynamical cores | ||
# https://doi.org/10.1002/qj.2241 | ||
|
||
using OrdinaryDiffEq | ||
using Trixi | ||
using LinearAlgebra | ||
|
||
############################################################################### | ||
# Setup for the baroclinic instability test | ||
gamma = 1.4 | ||
equations = CompressibleEulerEquations3D(gamma) | ||
|
||
# Initial condition for an idealized baroclinic instability test | ||
# https://doi.org/10.1002/qj.2241, Section 3.2 and Appendix A | ||
function initial_condition_baroclinic_instability(x, t, | ||
equations::CompressibleEulerEquations3D) | ||
lon, lat, r = cartesian_to_sphere(x) | ||
radius_earth = 6.371229e6 | ||
# Make sure that the r is not smaller than radius_earth | ||
z = max(r - radius_earth, 0.0) | ||
|
||
# Unperturbed basic state | ||
rho, u, p = basic_state_baroclinic_instability_longitudinal_velocity(lon, lat, z) | ||
|
||
# Stream function type perturbation | ||
u_perturbation, v_perturbation = perturbation_stream_function(lon, lat, z) | ||
|
||
u += u_perturbation | ||
v = v_perturbation | ||
|
||
# Convert spherical velocity to Cartesian | ||
v1 = -sin(lon) * u - sin(lat) * cos(lon) * v | ||
v2 = cos(lon) * u - sin(lat) * sin(lon) * v | ||
v3 = cos(lat) * v | ||
|
||
return prim2cons(SVector(rho, v1, v2, v3, p), equations) | ||
end | ||
|
||
# Steady state for RHS correction below | ||
function steady_state_baroclinic_instability(x, t, equations::CompressibleEulerEquations3D) | ||
lon, lat, r = cartesian_to_sphere(x) | ||
radius_earth = 6.371229e6 | ||
# Make sure that the r is not smaller than radius_earth | ||
z = max(r - radius_earth, 0.0) | ||
|
||
# Unperturbed basic state | ||
rho, u, p = basic_state_baroclinic_instability_longitudinal_velocity(lon, lat, z) | ||
|
||
# Convert spherical velocity to Cartesian | ||
v1 = -sin(lon) * u | ||
v2 = cos(lon) * u | ||
v3 = 0.0 | ||
|
||
return prim2cons(SVector(rho, v1, v2, v3, p), equations) | ||
end | ||
|
||
function cartesian_to_sphere(x) | ||
r = norm(x) | ||
lambda = atan(x[2], x[1]) | ||
if lambda < 0 | ||
lambda += 2 * pi | ||
end | ||
phi = asin(x[3] / r) | ||
|
||
return lambda, phi, r | ||
end | ||
|
||
# Unperturbed balanced steady-state. | ||
# Returns primitive variables with only the velocity in longitudinal direction (rho, u, p). | ||
# The other velocity components are zero. | ||
function basic_state_baroclinic_instability_longitudinal_velocity(lon, lat, z) | ||
# Parameters from Table 1 in the paper | ||
# Corresponding names in the paper are commented | ||
radius_earth = 6.371229e6 # a | ||
half_width_parameter = 2 # b | ||
gravitational_acceleration = 9.80616 # g | ||
k = 3 # k | ||
surface_pressure = 1e5 # p₀ | ||
gas_constant = 287 # R | ||
surface_equatorial_temperature = 310.0 # T₀ᴱ | ||
surface_polar_temperature = 240.0 # T₀ᴾ | ||
lapse_rate = 0.005 # Γ | ||
angular_velocity = 7.29212e-5 # Ω | ||
|
||
# Distance to the center of the Earth | ||
r = z + radius_earth | ||
|
||
# In the paper: T₀ | ||
temperature0 = 0.5 * (surface_equatorial_temperature + surface_polar_temperature) | ||
# In the paper: A, B, C, H | ||
const_a = 1 / lapse_rate | ||
const_b = (temperature0 - surface_polar_temperature) / | ||
(temperature0 * surface_polar_temperature) | ||
const_c = 0.5 * (k + 2) * (surface_equatorial_temperature - surface_polar_temperature) / | ||
(surface_equatorial_temperature * surface_polar_temperature) | ||
const_h = gas_constant * temperature0 / gravitational_acceleration | ||
|
||
# In the paper: (r - a) / bH | ||
scaled_z = z / (half_width_parameter * const_h) | ||
|
||
# Temporary variables | ||
temp1 = exp(lapse_rate / temperature0 * z) | ||
temp2 = exp(-scaled_z^2) | ||
|
||
# In the paper: ̃τ₁, ̃τ₂ | ||
tau1 = const_a * lapse_rate / temperature0 * temp1 + | ||
const_b * (1 - 2 * scaled_z^2) * temp2 | ||
tau2 = const_c * (1 - 2 * scaled_z^2) * temp2 | ||
|
||
# In the paper: ∫τ₁(r') dr', ∫τ₂(r') dr' | ||
inttau1 = const_a * (temp1 - 1) + const_b * z * temp2 | ||
inttau2 = const_c * z * temp2 | ||
|
||
# Temporary variables | ||
temp3 = r / radius_earth * cos(lat) | ||
temp4 = temp3^k - k / (k + 2) * temp3^(k + 2) | ||
|
||
# In the paper: T | ||
temperature = 1 / ((r / radius_earth)^2 * (tau1 - tau2 * temp4)) | ||
|
||
# In the paper: U, u (zonal wind, first component of spherical velocity) | ||
big_u = gravitational_acceleration / radius_earth * k * temperature * inttau2 * | ||
(temp3^(k - 1) - temp3^(k + 1)) | ||
temp5 = radius_earth * cos(lat) | ||
u = -angular_velocity * temp5 + sqrt(angular_velocity^2 * temp5^2 + temp5 * big_u) | ||
|
||
# Hydrostatic pressure | ||
p = surface_pressure * | ||
exp(-gravitational_acceleration / gas_constant * (inttau1 - inttau2 * temp4)) | ||
|
||
# Density (via ideal gas law) | ||
rho = p / (gas_constant * temperature) | ||
|
||
return rho, u, p | ||
end | ||
|
||
# Perturbation as in Equations 25 and 26 of the paper (analytical derivative) | ||
function perturbation_stream_function(lon, lat, z) | ||
# Parameters from Table 1 in the paper | ||
# Corresponding names in the paper are commented | ||
perturbation_radius = 1 / 6 # d₀ / a | ||
perturbed_wind_amplitude = 1.0 # Vₚ | ||
perturbation_lon = pi / 9 # Longitude of perturbation location | ||
perturbation_lat = 2 * pi / 9 # Latitude of perturbation location | ||
pertz = 15000 # Perturbation height cap | ||
|
||
# Great circle distance (d in the paper) divided by a (radius of the Earth) | ||
# because we never actually need d without dividing by a | ||
great_circle_distance_by_a = acos(sin(perturbation_lat) * sin(lat) + | ||
cos(perturbation_lat) * cos(lat) * | ||
cos(lon - perturbation_lon)) | ||
|
||
# In the first case, the vertical taper function is per definition zero. | ||
# In the second case, the stream function is per definition zero. | ||
if z > pertz || great_circle_distance_by_a > perturbation_radius | ||
return 0.0, 0.0 | ||
end | ||
|
||
# Vertical tapering of stream function | ||
perttaper = 1.0 - 3 * z^2 / pertz^2 + 2 * z^3 / pertz^3 | ||
|
||
# sin/cos(pi * d / (2 * d_0)) in the paper | ||
sin_, cos_ = sincos(0.5 * pi * great_circle_distance_by_a / perturbation_radius) | ||
|
||
# Common factor for both u and v | ||
factor = 16 / (3 * sqrt(3)) * perturbed_wind_amplitude * perttaper * cos_^3 * sin_ | ||
|
||
u_perturbation = -factor * (-sin(perturbation_lat) * cos(lat) + | ||
cos(perturbation_lat) * sin(lat) * cos(lon - perturbation_lon)) / | ||
sin(great_circle_distance_by_a) | ||
|
||
v_perturbation = factor * cos(perturbation_lat) * sin(lon - perturbation_lon) / | ||
sin(great_circle_distance_by_a) | ||
|
||
return u_perturbation, v_perturbation | ||
end | ||
|
||
@inline function source_terms_baroclinic_instability(u, x, t, | ||
equations::CompressibleEulerEquations3D) | ||
radius_earth = 6.371229e6 # a | ||
gravitational_acceleration = 9.80616 # g | ||
angular_velocity = 7.29212e-5 # Ω | ||
|
||
r = norm(x) | ||
# Make sure that r is not smaller than radius_earth | ||
z = max(r - radius_earth, 0.0) | ||
r = z + radius_earth | ||
|
||
du1 = zero(eltype(u)) | ||
|
||
# Gravity term | ||
temp = -gravitational_acceleration * radius_earth^2 / r^3 | ||
du2 = temp * u[1] * x[1] | ||
du3 = temp * u[1] * x[2] | ||
du4 = temp * u[1] * x[3] | ||
du5 = temp * (u[2] * x[1] + u[3] * x[2] + u[4] * x[3]) | ||
|
||
# Coriolis term, -2Ω × ρv = -2 * angular_velocity * (0, 0, 1) × u[2:4] | ||
du2 -= -2 * angular_velocity * u[3] | ||
du3 -= 2 * angular_velocity * u[2] | ||
|
||
return SVector(du1, du2, du3, du4, du5) | ||
end | ||
|
||
############################################################################### | ||
# Start of the actual elixir, semidiscretization of the problem | ||
|
||
initial_condition = initial_condition_baroclinic_instability | ||
|
||
boundary_conditions = Dict(:inside => boundary_condition_slip_wall, | ||
:outside => boundary_condition_slip_wall) | ||
|
||
# This is a good estimate for the speed of sound in this example. | ||
# Other values between 300 and 400 should work as well. | ||
surface_flux = FluxLMARS(340) | ||
volume_flux = flux_kennedy_gruber | ||
solver = DGSEM(polydeg = 5, surface_flux = surface_flux, | ||
volume_integral = VolumeIntegralFluxDifferencing(volume_flux)) | ||
|
||
# For optimal results, use (16, 8) here | ||
trees_per_cube_face = (8, 4) | ||
mesh = Trixi.T8codeMeshCubedSphere(trees_per_cube_face..., 6.371229e6, 30000.0, | ||
polydeg = 5, initial_refinement_level = 0) | ||
|
||
semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver, | ||
source_terms = source_terms_baroclinic_instability, | ||
boundary_conditions = boundary_conditions) | ||
|
||
############################################################################### | ||
# ODE solvers, callbacks etc. | ||
|
||
tspan = (0.0, 10 * 24 * 60 * 60.0) # time in seconds for 10 days | ||
|
||
# Save RHS of the steady state and subtract it in every RHS evaluation. | ||
# This trick preserves the steady state exactly (to machine rounding errors, of course). | ||
# Otherwise, this elixir produces entirely unusable results for a resolution of 8x8x4 cells | ||
# per cube face with a polydeg of 3. | ||
# With this trick, even the polydeg 3 simulation produces usable (although badly resolved) results, | ||
# and most of the grid imprinting in higher polydeg simulation is eliminated. | ||
# | ||
# See https://github.com/trixi-framework/Trixi.jl/issues/980 for more information. | ||
u_steady_state = compute_coefficients(steady_state_baroclinic_instability, tspan[1], semi) | ||
# Use a `let` block for performance (otherwise du_steady_state will be a global variable) | ||
let du_steady_state = similar(u_steady_state) | ||
# Save RHS of the steady state | ||
Trixi.rhs!(du_steady_state, u_steady_state, semi, tspan[1]) | ||
|
||
global function corrected_rhs!(du, u, semi, t) | ||
# Normal RHS evaluation | ||
Trixi.rhs!(du, u, semi, t) | ||
# Correct by subtracting the steady-state RHS | ||
Trixi.@trixi_timeit Trixi.timer() "rhs correction" begin | ||
# Use Trixi.@threaded for threaded performance | ||
Trixi.@threaded for i in eachindex(du) | ||
du[i] -= du_steady_state[i] | ||
end | ||
end | ||
end | ||
end | ||
u0 = compute_coefficients(tspan[1], semi) | ||
ode = ODEProblem(corrected_rhs!, u0, tspan, semi) | ||
|
||
summary_callback = SummaryCallback() | ||
|
||
analysis_interval = 5000 | ||
analysis_callback = AnalysisCallback(semi, interval = analysis_interval) | ||
|
||
alive_callback = AliveCallback(analysis_interval = analysis_interval) | ||
|
||
save_solution = SaveSolutionCallback(interval = 5000, | ||
save_initial_solution = true, | ||
save_final_solution = true, | ||
solution_variables = cons2prim) | ||
|
||
callbacks = CallbackSet(summary_callback, | ||
analysis_callback, | ||
alive_callback, | ||
save_solution) | ||
|
||
############################################################################### | ||
# run the simulation | ||
|
||
# Use a Runge-Kutta method with automatic (error based) time step size control | ||
# Enable threading of the RK method for better performance on multiple threads | ||
sol = solve(ode, RDPK3SpFSAL49(thread = OrdinaryDiffEq.True()); abstol = 1.0e-6, | ||
reltol = 1.0e-6, | ||
ode_default_options()..., callback = callbacks); | ||
|
||
summary_callback() # print the timer summary |
Oops, something went wrong.