-
Notifications
You must be signed in to change notification settings - Fork 112
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
0507e1a
commit bf88ef8
Showing
2 changed files
with
113 additions
and
2 deletions.
There are no files selected for viewing
110 changes: 110 additions & 0 deletions
110
examples/p4est_2d_dgsem/elixir_navierstokes_blast_wave_sutherland.jl
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,110 @@ | ||
|
||
using OrdinaryDiffEq | ||
using Trixi | ||
|
||
############################################################################### | ||
# semidiscretization of the compressible Euler equations | ||
|
||
# TODO: parabolic; unify names of these accessor functions | ||
prandtl_number() = 0.72 | ||
|
||
# Compute dynamic viscosity according to Sutherland's law for air | ||
@inline function mu(u, equations) | ||
T_ref = 291.15 | ||
T = Trixi.temperature(u, equations) | ||
C_air = 120.0 | ||
mu0_air = 18.27e-6 | ||
|
||
return mu0_air * (T_ref + C_air) / (T + C_air) * (T / T_ref)^1.5 | ||
end | ||
|
||
equations = CompressibleEulerEquations2D(1.4) | ||
equations_parabolic = CompressibleNavierStokesDiffusion2D(equations, mu = mu, | ||
Prandtl = prandtl_number()) | ||
|
||
""" | ||
initial_condition_blast_wave(x, t, equations::CompressibleEulerEquations2D) | ||
A medium blast wave taken from | ||
- Sebastian Hennemann, Gregor J. Gassner (2020) | ||
A provably entropy stable subcell shock capturing approach for high order split form DG | ||
[arXiv: 2008.12044](https://arxiv.org/abs/2008.12044) | ||
""" | ||
function initial_condition_blast_wave(x, t, equations) | ||
# Modified From Hennemann & Gassner JCP paper 2020 (Sec. 6.3) -> "medium blast wave" | ||
# Set up polar coordinates | ||
inicenter = SVector(0.0, 0.0) | ||
x_norm = x[1] - inicenter[1] | ||
y_norm = x[2] - inicenter[2] | ||
r = sqrt(x_norm^2 + y_norm^2) | ||
phi = atan(y_norm, x_norm) | ||
sin_phi, cos_phi = sincos(phi) | ||
|
||
# Calculate primitive variables | ||
rho = r > 0.5 ? 1.0 : 1.1691 | ||
v1 = r > 0.5 ? 0.0 : 0.1882 * cos_phi | ||
v2 = r > 0.5 ? 0.0 : 0.1882 * sin_phi | ||
p = r > 0.5 ? 2.0E-3 : 1.245 # Use 2.0E-3 instead of 1.0E-3 to avoid negative temperature | ||
|
||
return prim2cons(SVector(rho, v1, v2, p), equations) | ||
end | ||
initial_condition = initial_condition_blast_wave | ||
|
||
surface_flux = flux_lax_friedrichs | ||
volume_flux = flux_ranocha | ||
basis = LobattoLegendreBasis(3) | ||
indicator_sc = IndicatorHennemannGassner(equations, basis, | ||
alpha_max = 0.5, | ||
alpha_min = 0.001, | ||
alpha_smooth = true, | ||
variable = density_pressure) | ||
volume_integral = VolumeIntegralShockCapturingHG(indicator_sc; | ||
volume_flux_dg = volume_flux, | ||
volume_flux_fv = surface_flux) | ||
solver = DGSEM(basis, surface_flux, volume_integral) | ||
|
||
# Unstructured mesh with 48 cells of the square domain [-1, 1]^n | ||
mesh_file = Trixi.download("https://gist.githubusercontent.com/efaulhaber/a075f8ec39a67fa9fad8f6f84342cbca/raw/a7206a02ed3a5d3cadacd8d9694ac154f9151db7/square_unstructured_1.inp", | ||
joinpath(@__DIR__, "square_unstructured_1.inp")) | ||
|
||
mesh = P4estMesh{2}(mesh_file, polydeg = 3, initial_refinement_level = 3) | ||
|
||
boundary_conditions = Dict(:all => BoundaryConditionDirichlet(initial_condition)) | ||
|
||
semi = SemidiscretizationHyperbolicParabolic(mesh, (equations, equations_parabolic), | ||
initial_condition, solver, | ||
boundary_conditions = (boundary_conditions, | ||
boundary_conditions)) | ||
|
||
############################################################################### | ||
# ODE solvers, callbacks etc. | ||
|
||
tspan = (0.0, 0.5) | ||
ode = semidiscretize(semi, tspan) | ||
|
||
summary_callback = SummaryCallback() | ||
|
||
analysis_interval = 100 | ||
analysis_callback = AnalysisCallback(semi, interval = analysis_interval) | ||
|
||
alive_callback = AliveCallback(analysis_interval = analysis_interval) | ||
|
||
save_solution = SaveSolutionCallback(interval = 100, | ||
save_initial_solution = true, | ||
save_final_solution = true, | ||
solution_variables = cons2prim) | ||
|
||
stepsize_callback = StepsizeCallback(cfl = 0.9) | ||
|
||
callbacks = CallbackSet(summary_callback, | ||
analysis_callback, alive_callback, | ||
save_solution, | ||
stepsize_callback) | ||
|
||
############################################################################### | ||
# run the simulation | ||
|
||
sol = solve(ode, SSPRK54(), | ||
dt = 1.0, # solve needs some value here but it will be overwritten by the stepsize_callback | ||
save_everystep = false, callback = callbacks); | ||
summary_callback() # print the timer summary |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters