Skip to content

Commit

Permalink
Add numerical support of other real types (polytropic_euler) (#2015)
Browse files Browse the repository at this point in the history
* start

* fix flux tests

* keep conflicts

* complete equations

* complete unit test
  • Loading branch information
huiyuxie authored Aug 16, 2024
1 parent 345f53a commit b9ace6d
Show file tree
Hide file tree
Showing 2 changed files with 101 additions and 25 deletions.
52 changes: 27 additions & 25 deletions src/equations/polytropic_euler_2d.jl
Original file line number Diff line number Diff line change
Expand Up @@ -62,7 +62,7 @@ in combination with [`source_terms_convergence_test`](@ref).
function initial_condition_convergence_test(x, t, equations::PolytropicEulerEquations2D)
# manufactured initial condition from Winters (2019) [0.1007/s10543-019-00789-w]
# domain must be set to [0, 1] x [0, 1]
h = 8 + cos(2 * pi * x[1]) * sin(2 * pi * x[2]) * cos(2 * pi * t)
h = 8 + cospi(2 * x[1]) * sinpi(2 * x[2]) * cospi(2 * t)

return SVector(h, h / 2, 3 * h / 2)
end
Expand All @@ -78,19 +78,20 @@ Source terms used for convergence tests in combination with
rho, v1, v2 = cons2prim(u, equations)

# Residual from Winters (2019) [0.1007/s10543-019-00789-w] eq. (5.2).
h = 8 + cos(2 * pi * x[1]) * sin(2 * pi * x[2]) * cos(2 * pi * t)
h_t = -2 * pi * cos(2 * pi * x[1]) * sin(2 * pi * x[2]) * sin(2 * pi * t)
h_x = -2 * pi * sin(2 * pi * x[1]) * sin(2 * pi * x[2]) * cos(2 * pi * t)
h_y = 2 * pi * cos(2 * pi * x[1]) * cos(2 * pi * x[2]) * cos(2 * pi * t)
RealT = eltype(u)
h = 8 + cospi(2 * x[1]) * sinpi(2 * x[2]) * cospi(2 * t)
h_t = -2 * convert(RealT, pi) * cospi(2 * x[1]) * sinpi(2 * x[2]) * sinpi(2 * t)
h_x = -2 * convert(RealT, pi) * sinpi(2 * x[1]) * sinpi(2 * x[2]) * cospi(2 * t)
h_y = 2 * convert(RealT, pi) * cospi(2 * x[1]) * cospi(2 * x[2]) * cospi(2 * t)

rho_x = h_x
rho_y = h_y

b = equations.kappa * equations.gamma * h^(equations.gamma - 1)

r_1 = h_t + h_x / 2 + 3 / 2 * h_y
r_2 = h_t / 2 + h_x / 4 + b * rho_x + 3 / 4 * h_y
r_3 = 3 / 2 * h_t + 3 / 4 * h_x + 9 / 4 * h_y + b * rho_y
r_1 = h_t + h_x / 2 + 3 * h_y / 2
r_2 = h_t / 2 + h_x / 4 + b * rho_x + 3 * h_y / 4
r_3 = 3 * h_t / 2 + 3 * h_x / 4 + 9 * h_y / 4 + b * rho_y

return SVector(r_1, r_2, r_3)
end
Expand All @@ -113,9 +114,10 @@ function initial_condition_weak_blast_wave(x, t, equations::PolytropicEulerEquat
phi = atan(y_norm, x_norm)

# Calculate primitive variables
rho = r > 0.5 ? 1.0 : 1.1691
v1 = r > 0.5 ? 0.0 : 0.1882 * cos(phi)
v2 = r > 0.5 ? 0.0 : 0.1882 * sin(phi)
RealT = eltype(x)
rho = r > 0.5f0 ? one(RealT) : convert(RealT, 1.1691)
v1 = r > 0.5f0 ? zero(RealT) : convert(RealT, 0.1882) * cos(phi)
v2 = r > 0.5f0 ? zero(RealT) : convert(RealT, 0.1882) * sin(phi)

return prim2cons(SVector(rho, v1, v2), equations)
end
Expand Down Expand Up @@ -181,17 +183,17 @@ For details see Section 3.2 of the following reference
v_dot_n_rr = v1_rr * normal_direction[1] + v2_rr * normal_direction[2]

# Compute the necessary mean values
if equations.gamma == 1.0 # isothermal gas
if equations.gamma == 1 # isothermal gas
rho_mean = ln_mean(rho_ll, rho_rr)
else # equations.gamma > 1 # polytropic gas
rho_mean = stolarsky_mean(rho_ll, rho_rr, equations.gamma)
end
v1_avg = 0.5 * (v1_ll + v1_rr)
v2_avg = 0.5 * (v2_ll + v2_rr)
p_avg = 0.5 * (p_ll + p_rr)
v1_avg = 0.5f0 * (v1_ll + v1_rr)
v2_avg = 0.5f0 * (v2_ll + v2_rr)
p_avg = 0.5f0 * (p_ll + p_rr)

# Calculate fluxes depending on normal_direction
f1 = rho_mean * 0.5 * (v_dot_n_ll + v_dot_n_rr)
f1 = rho_mean * 0.5f0 * (v_dot_n_ll + v_dot_n_rr)
f2 = f1 * v1_avg + p_avg * normal_direction[1]
f3 = f1 * v2_avg + p_avg * normal_direction[2]

Expand All @@ -207,21 +209,21 @@ end
p_rr = equations.kappa * rho_rr^equations.gamma

# Compute the necessary mean values
if equations.gamma == 1.0 # isothermal gas
if equations.gamma == 1 # isothermal gas
rho_mean = ln_mean(rho_ll, rho_rr)
else # equations.gamma > 1 # polytropic gas
rho_mean = stolarsky_mean(rho_ll, rho_rr, equations.gamma)
end
v1_avg = 0.5 * (v1_ll + v1_rr)
v2_avg = 0.5 * (v2_ll + v2_rr)
p_avg = 0.5 * (p_ll + p_rr)
v1_avg = 0.5f0 * (v1_ll + v1_rr)
v2_avg = 0.5f0 * (v2_ll + v2_rr)
p_avg = 0.5f0 * (p_ll + p_rr)

if orientation == 1 # x-direction
f1 = rho_mean * 0.5 * (v1_ll + v1_rr)
f1 = rho_mean * 0.5f0 * (v1_ll + v1_rr)
f2 = f1 * v1_avg + p_avg
f3 = f1 * v2_avg
else # y-direction
f1 = rho_mean * 0.5 * (v2_ll + v2_rr)
f1 = rho_mean * 0.5f0 * (v2_ll + v2_rr)
f2 = f1 * v1_avg
f3 = f1 * v2_avg + p_avg
end
Expand Down Expand Up @@ -360,14 +362,14 @@ end
v_square = v1^2 + v2^2
p = pressure(u, equations)
# Form of the internal energy depends on gas type
if equations.gamma == 1.0 # isothermal gas
if equations.gamma == 1 # isothermal gas
internal_energy = equations.kappa * log(rho)
else # equations.gamma > 1 # polytropic gas
internal_energy = equations.kappa * rho^(equations.gamma - 1) /
(equations.gamma - 1.0)
(equations.gamma - 1)
end

w1 = internal_energy + p / rho - 0.5 * v_square
w1 = internal_energy + p / rho - 0.5f0 * v_square
w2 = v1
w3 = v2

Expand Down
74 changes: 74 additions & 0 deletions test/test_type.jl
Original file line number Diff line number Diff line change
Expand Up @@ -1926,6 +1926,80 @@ isdir(outdir) && rm(outdir, recursive = true)
end
end

@timed_testset "Polytropic Euler 2D" begin
for RealT in (Float32, Float64)
equations1 = @inferred PolytropicEulerEquations2D(RealT(1),
RealT(1)) # equations.gamma == 1
equations2 = @inferred PolytropicEulerEquations2D(RealT(1.4), RealT(0.5)) # equations.gamma > 1

for equations in (equations1, equations2)
x = SVector(zero(RealT), zero(RealT))
t = zero(RealT)
u = u_ll = u_rr = SVector(one(RealT), one(RealT), one(RealT))
orientations = [1, 2]
directions = [1, 2, 3, 4]
normal_direction = SVector(one(RealT), zero(RealT))

@test eltype(@inferred initial_condition_convergence_test(x, t, equations)) ==
RealT
@test eltype(@inferred source_terms_convergence_test(u, x, t, equations)) ==
RealT
@test eltype(@inferred initial_condition_weak_blast_wave(x, t, equations)) ==
RealT

@test eltype(@inferred flux(u, normal_direction, equations)) == RealT
if RealT == Float32
# check `ln_mean` and `stolarsky_mean` (test broken)
@test_broken eltype(@inferred flux_winters_etal(u_ll, u_rr,
normal_direction,
equations)) ==
RealT
else
@test eltype(@inferred flux_winters_etal(u_ll, u_rr, normal_direction,
equations)) ==
RealT
end
@test eltype(@inferred min_max_speed_naive(u_ll, u_rr, normal_direction,
equations)) ==
RealT
@test eltype(@inferred min_max_speed_davis(u_ll, u_rr, normal_direction,
equations)) ==
RealT
@test typeof(@inferred max_abs_speed_naive(u_ll, u_rr, normal_direction,
equations)) ==
RealT

for orientation in orientations
@test eltype(@inferred flux(u, orientation, equations)) == RealT
if RealT == Float32
# check `ln_mean` and `stolarsky_mean` (test broken)
@test_broken eltype(@inferred flux_winters_etal(u_ll, u_rr,
orientation,
equations)) ==
RealT
else
@test eltype(@inferred flux_winters_etal(u_ll, u_rr, orientation,
equations)) ==
RealT
end
@test eltype(@inferred min_max_speed_davis(u_ll, u_rr, orientation,
equations)) ==
RealT
@test typeof(@inferred max_abs_speed_naive(u_ll, u_rr, orientation,
equations)) ==
RealT
end

@test eltype(@inferred Trixi.max_abs_speeds(u, equations)) == RealT
@test eltype(@inferred cons2prim(u, equations)) == RealT
@test eltype(@inferred prim2cons(u, equations)) == RealT
@test eltype(@inferred cons2entropy(u, equations)) == RealT
@test typeof(@inferred density(u, equations)) == RealT
@test typeof(@inferred pressure(u, equations)) == RealT
end
end
end

@timed_testset "Shallow Water 1D" begin
for RealT in (Float32, Float64)
equations = @inferred ShallowWaterEquations1D(gravity_constant = RealT(9.81))
Expand Down

0 comments on commit b9ace6d

Please sign in to comment.