Skip to content

Commit

Permalink
Merge branch 'main' into DoubleFloats
Browse files Browse the repository at this point in the history
  • Loading branch information
DanielDoehring authored Nov 28, 2024
2 parents 3824e16 + 897c1cd commit 83cdbb3
Show file tree
Hide file tree
Showing 10 changed files with 645 additions and 5 deletions.
183 changes: 183 additions & 0 deletions examples/p4est_2d_dgsem/elixir_navierstokes_viscous_shock.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,183 @@
using OrdinaryDiffEq
using Trixi

# This is the classic 1D viscous shock wave problem with analytical solution
# for a special value of the Prandtl number.
# The original references are:
#
# - R. Becker (1922)
# Stoßwelle und Detonation.
# [DOI: 10.1007/BF01329605](https://doi.org/10.1007/BF01329605)
#
# English translations:
# Impact waves and detonation. Part I.
# https://ntrs.nasa.gov/api/citations/19930090862/downloads/19930090862.pdf
# Impact waves and detonation. Part II.
# https://ntrs.nasa.gov/api/citations/19930090863/downloads/19930090863.pdf
#
# - M. Morduchow, P. A. Libby (1949)
# On a Complete Solution of the One-Dimensional Flow Equations
# of a Viscous, Head-Conducting, Compressible Gas
# [DOI: 10.2514/8.11882](https://doi.org/10.2514/8.11882)
#
#
# The particular problem considered here is described in
# - L. G. Margolin, J. M. Reisner, P. M. Jordan (2017)
# Entropy in self-similar shock profiles
# [DOI: 10.1016/j.ijnonlinmec.2017.07.003](https://doi.org/10.1016/j.ijnonlinmec.2017.07.003)

### Fixed parameters ###

# Special value for which nonlinear solver can be omitted
# Corresponds essentially to fixing the Mach number
alpha = 0.5
# We want kappa = cp * mu = mu_bar to ensure constant enthalpy
prandtl_number() = 3 / 4

### Free choices: ###
gamma() = 5 / 3

# In Margolin et al., the Navier-Stokes equations are given for an
# isotropic stress tensor τ, i.e., ∇ ⋅ τ = μ Δu
mu_isotropic() = 0.15
mu_bar() = mu_isotropic() / (gamma() - 1) # Re-scaled viscosity

rho_0() = 1
v() = 1 # Shock speed

domain_length = 4.0

### Derived quantities ###

Ma() = 2 / sqrt(3 - gamma()) # Mach number for alpha = 0.5
c_0() = v() / Ma() # Speed of sound ahead of the shock

# From constant enthalpy condition
p_0() = c_0()^2 * rho_0() / gamma()

l() = mu_bar() / (rho_0() * v()) * 2 * gamma() / (gamma() + 1) # Appropriate length scale

"""
initial_condition_viscous_shock(x, t, equations)
Classic 1D viscous shock wave problem with analytical solution
for a special value of the Prandtl number.
The version implemented here is described in
- L. G. Margolin, J. M. Reisner, P. M. Jordan (2017)
Entropy in self-similar shock profiles
[DOI: 10.1016/j.ijnonlinmec.2017.07.003](https://doi.org/10.1016/j.ijnonlinmec.2017.07.003)
"""
function initial_condition_viscous_shock(x, t, equations)
y = x[1] - v() * t # Translated coordinate

# Coordinate transformation. See eq. (33) in Margolin et al. (2017)
chi = 2 * exp(y / (2 * l()))

w = 1 + 1 / (2 * chi^2) * (1 - sqrt(1 + 2 * chi^2))

rho = rho_0() / w
u = v() * (1 - w)
p = p_0() * 1 / w * (1 + (gamma() - 1) / 2 * Ma()^2 * (1 - w^2))

return prim2cons(SVector(rho, u, 0, p), equations)
end
initial_condition = initial_condition_viscous_shock

###############################################################################
# semidiscretization of the ideal compressible Navier-Stokes equations

equations = CompressibleEulerEquations2D(gamma())

# Trixi implements the stress tensor in deviatoric form, thus we need to
# convert the "isotropic viscosity" to the "deviatoric viscosity"
mu_deviatoric() = mu_bar() * 3 / 4
equations_parabolic = CompressibleNavierStokesDiffusion2D(equations, mu = mu_deviatoric(),
Prandtl = prandtl_number(),
gradient_variables = GradientVariablesPrimitive())

solver = DGSEM(polydeg = 3, surface_flux = flux_hlle)

coordinates_min = (-domain_length / 2, -domain_length / 2)
coordinates_max = (domain_length / 2, domain_length / 2)

trees_per_dimension = (8, 2)
mesh = P4estMesh(trees_per_dimension,
polydeg = 3, initial_refinement_level = 0,
coordinates_min = coordinates_min, coordinates_max = coordinates_max,
periodicity = (false, true))

### Inviscid boundary conditions ###

# Prescribe pure influx based on initial conditions
function boundary_condition_inflow(u_inner, normal_direction::AbstractVector, x, t,
surface_flux_function,
equations::CompressibleEulerEquations2D)
u_cons = initial_condition_viscous_shock(x, t, equations)
flux = Trixi.flux(u_cons, normal_direction, equations)

return flux
end

# Completely free outflow
function boundary_condition_outflow(u_inner, normal_direction::AbstractVector, x, t,
surface_flux_function,
equations::CompressibleEulerEquations2D)
# Calculate the boundary flux entirely from the internal solution state
flux = Trixi.flux(u_inner, normal_direction, equations)

return flux
end

boundary_conditions = Dict(:x_neg => boundary_condition_inflow,
:x_pos => boundary_condition_outflow)

### Viscous boundary conditions ###
# For the viscous BCs, we use the known analytical solution
velocity_bc = NoSlip() do x, t, equations_parabolic
Trixi.velocity(initial_condition_viscous_shock(x,
t,
equations_parabolic),
equations_parabolic)
end

heat_bc = Isothermal() do x, t, equations_parabolic
Trixi.temperature(initial_condition_viscous_shock(x,
t,
equations_parabolic),
equations_parabolic)
end

boundary_condition_parabolic = BoundaryConditionNavierStokesWall(velocity_bc, heat_bc)

boundary_conditions_parabolic = Dict(:x_neg => boundary_condition_parabolic,
:x_pos => boundary_condition_parabolic)

semi = SemidiscretizationHyperbolicParabolic(mesh, (equations, equations_parabolic),
initial_condition, solver;
boundary_conditions = (boundary_conditions,
boundary_conditions_parabolic))

###############################################################################
# ODE solvers, callbacks etc.

# Create ODE problem with time span `tspan`
tspan = (0.0, 0.5)
ode = semidiscretize(semi, tspan)

summary_callback = SummaryCallback()

alive_callback = AliveCallback(alive_interval = 10)

analysis_interval = 100
analysis_callback = AnalysisCallback(semi, interval = analysis_interval)

callbacks = CallbackSet(summary_callback, alive_callback, analysis_callback)

###############################################################################
# run the simulation

time_int_tol = 1e-8
sol = solve(ode, RDPK3SpFSAL49(); abstol = time_int_tol, reltol = time_int_tol,
dt = 1e-3, ode_default_options()..., callback = callbacks)

summary_callback() # print the timer summary
183 changes: 183 additions & 0 deletions examples/p4est_3d_dgsem/elixir_navierstokes_viscous_shock.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,183 @@
using OrdinaryDiffEq
using Trixi

# This is the classic 1D viscous shock wave problem with analytical solution
# for a special value of the Prandtl number.
# The original references are:
#
# - R. Becker (1922)
# Stoßwelle und Detonation.
# [DOI: 10.1007/BF01329605](https://doi.org/10.1007/BF01329605)
#
# English translations:
# Impact waves and detonation. Part I.
# https://ntrs.nasa.gov/api/citations/19930090862/downloads/19930090862.pdf
# Impact waves and detonation. Part II.
# https://ntrs.nasa.gov/api/citations/19930090863/downloads/19930090863.pdf
#
# - M. Morduchow, P. A. Libby (1949)
# On a Complete Solution of the One-Dimensional Flow Equations
# of a Viscous, Head-Conducting, Compressible Gas
# [DOI: 10.2514/8.11882](https://doi.org/10.2514/8.11882)
#
#
# The particular problem considered here is described in
# - L. G. Margolin, J. M. Reisner, P. M. Jordan (2017)
# Entropy in self-similar shock profiles
# [DOI: 10.1016/j.ijnonlinmec.2017.07.003](https://doi.org/10.1016/j.ijnonlinmec.2017.07.003)

### Fixed parameters ###

# Special value for which nonlinear solver can be omitted
# Corresponds essentially to fixing the Mach number
alpha = 0.5
# We want kappa = cp * mu = mu_bar to ensure constant enthalpy
prandtl_number() = 3 / 4

### Free choices: ###
gamma() = 5 / 3

# In Margolin et al., the Navier-Stokes equations are given for an
# isotropic stress tensor τ, i.e., ∇ ⋅ τ = μ Δu
mu_isotropic() = 0.15
mu_bar() = mu_isotropic() / (gamma() - 1) # Re-scaled viscosity

rho_0() = 1
v() = 1 # Shock speed

domain_length = 4.0

### Derived quantities ###

Ma() = 2 / sqrt(3 - gamma()) # Mach number for alpha = 0.5
c_0() = v() / Ma() # Speed of sound ahead of the shock

# From constant enthalpy condition
p_0() = c_0()^2 * rho_0() / gamma()

l() = mu_bar() / (rho_0() * v()) * 2 * gamma() / (gamma() + 1) # Appropriate length scale

"""
initial_condition_viscous_shock(x, t, equations)
Classic 1D viscous shock wave problem with analytical solution
for a special value of the Prandtl number.
The version implemented here is described in
- L. G. Margolin, J. M. Reisner, P. M. Jordan (2017)
Entropy in self-similar shock profiles
[DOI: 10.1016/j.ijnonlinmec.2017.07.003](https://doi.org/10.1016/j.ijnonlinmec.2017.07.003)
"""
function initial_condition_viscous_shock(x, t, equations)
y = x[1] - v() * t # Translated coordinate

# Coordinate transformation. See eq. (33) in Margolin et al. (2017)
chi = 2 * exp(y / (2 * l()))

w = 1 + 1 / (2 * chi^2) * (1 - sqrt(1 + 2 * chi^2))

rho = rho_0() / w
u = v() * (1 - w)
p = p_0() * 1 / w * (1 + (gamma() - 1) / 2 * Ma()^2 * (1 - w^2))

return prim2cons(SVector(rho, u, 0, 0, p), equations)
end
initial_condition = initial_condition_viscous_shock

###############################################################################
# semidiscretization of the ideal compressible Navier-Stokes equations

equations = CompressibleEulerEquations3D(gamma())

# Trixi implements the stress tensor in deviatoric form, thus we need to
# convert the "isotropic viscosity" to the "deviatoric viscosity"
mu_deviatoric() = mu_bar() * 3 / 4
equations_parabolic = CompressibleNavierStokesDiffusion3D(equations, mu = mu_deviatoric(),
Prandtl = prandtl_number(),
gradient_variables = GradientVariablesPrimitive())

solver = DGSEM(polydeg = 3, surface_flux = flux_hlle)

coordinates_min = (-domain_length / 2, -domain_length / 2, -domain_length / 2)
coordinates_max = (domain_length / 2, domain_length / 2, domain_length / 2)

trees_per_dimension = (8, 2, 2)
mesh = P4estMesh(trees_per_dimension,
polydeg = 3, initial_refinement_level = 0,
coordinates_min = coordinates_min, coordinates_max = coordinates_max,
periodicity = (false, true, true))

### Inviscid boundary conditions ###

# Prescribe pure influx based on initial conditions
function boundary_condition_inflow(u_inner, normal_direction::AbstractVector, x, t,
surface_flux_function,
equations::CompressibleEulerEquations3D)
u_cons = initial_condition_viscous_shock(x, t, equations)
flux = Trixi.flux(u_cons, normal_direction, equations)

return flux
end

# Completely free outflow
function boundary_condition_outflow(u_inner, normal_direction::AbstractVector, x, t,
surface_flux_function,
equations::CompressibleEulerEquations3D)
# Calculate the boundary flux entirely from the internal solution state
flux = Trixi.flux(u_inner, normal_direction, equations)

return flux
end

boundary_conditions = Dict(:x_neg => boundary_condition_inflow,
:x_pos => boundary_condition_outflow)

### Viscous boundary conditions ###
# For the viscous BCs, we use the known analytical solution
velocity_bc = NoSlip() do x, t, equations_parabolic
Trixi.velocity(initial_condition_viscous_shock(x,
t,
equations_parabolic),
equations_parabolic)
end

heat_bc = Isothermal() do x, t, equations_parabolic
Trixi.temperature(initial_condition_viscous_shock(x,
t,
equations_parabolic),
equations_parabolic)
end

boundary_condition_parabolic = BoundaryConditionNavierStokesWall(velocity_bc, heat_bc)

boundary_conditions_parabolic = Dict(:x_neg => boundary_condition_parabolic,
:x_pos => boundary_condition_parabolic)

semi = SemidiscretizationHyperbolicParabolic(mesh, (equations, equations_parabolic),
initial_condition, solver;
boundary_conditions = (boundary_conditions,
boundary_conditions_parabolic))

###############################################################################
# ODE solvers, callbacks etc.

# Create ODE problem with time span `tspan`
tspan = (0.0, 0.5)
ode = semidiscretize(semi, tspan)

summary_callback = SummaryCallback()

alive_callback = AliveCallback(alive_interval = 10)

analysis_interval = 100
analysis_callback = AnalysisCallback(semi, interval = analysis_interval)

callbacks = CallbackSet(summary_callback, alive_callback, analysis_callback)

###############################################################################
# run the simulation

time_int_tol = 1e-8
sol = solve(ode, RDPK3SpFSAL49(); abstol = time_int_tol, reltol = time_int_tol,
dt = 1e-3, ode_default_options()..., callback = callbacks)

summary_callback() # print the timer summary
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,8 @@ mesh = StructuredMesh(cells_per_dimension, coordinates_min, coordinates_max,
# Green light that at x = 0 which switches at t = 0 from red to green.
# To the left there are cars bumper to bumper, to the right there are no cars.
function initial_condition_greenlight(x, t, equation::TrafficFlowLWREquations1D)
scalar = x[1] < 0.0 ? 1.0 : 0.0
RealT = eltype(x)
scalar = x[1] < 0 ? one(RealT) : zero(RealT)

return SVector(scalar)
end
Expand All @@ -29,7 +30,8 @@ end

# Assume that there are always cars waiting at the left
function inflow(x, t, equations::TrafficFlowLWREquations1D)
return initial_condition_greenlight(coordinates_min, t, equations)
# -1.0 = coordinates_min
return initial_condition_greenlight(-1.0, t, equations)
end
boundary_condition_inflow = BoundaryConditionDirichlet(inflow)

Expand Down
Loading

0 comments on commit 83cdbb3

Please sign in to comment.