Skip to content

Commit

Permalink
Merge branch 'main' into subcell-limiting-parallel-bounds-check
Browse files Browse the repository at this point in the history
  • Loading branch information
bennibolm authored Dec 18, 2023
2 parents 19151b2 + 6bef107 commit 60c5739
Show file tree
Hide file tree
Showing 32 changed files with 1,940 additions and 398 deletions.
8 changes: 5 additions & 3 deletions Project.toml
Original file line number Diff line number Diff line change
@@ -1,11 +1,12 @@
name = "Trixi"
uuid = "a7f1ee26-1774-49b1-8366-f1abc58fbfcb"
authors = ["Michael Schlottke-Lakemper <[email protected]>", "Gregor Gassner <[email protected]>", "Hendrik Ranocha <[email protected]>", "Andrew R. Winters <[email protected]>", "Jesse Chan <[email protected]>"]
version = "0.6.4-pre"
version = "0.6.5-pre"

[deps]
CodeTracking = "da1fd8a2-8d9e-5ec2-8556-3022fb5608a2"
ConstructionBase = "187b0558-2788-49d3-abe0-74a17ed4e7c9"
DataStructures = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8"
DiffEqCallbacks = "459566f4-90b8-5000-8ac3-15dfb0a30def"
EllipsisNotation = "da5c29d0-fa7d-589e-88eb-ea29b0a81949"
FillArrays = "1a297f60-69ca-5386-bcde-b61e274b549b"
Expand Down Expand Up @@ -52,6 +53,7 @@ TrixiMakieExt = "Makie"
[compat]
CodeTracking = "1.0.5"
ConstructionBase = "1.3"
DataStructures = "0.18.15"
DiffEqCallbacks = "2.25"
EllipsisNotation = "1.0"
FillArrays = "0.13.2, 1"
Expand Down Expand Up @@ -84,8 +86,8 @@ StaticArrays = "1"
StrideArrays = "0.1.18"
StructArrays = "0.6"
SummationByPartsOperators = "0.5.41"
T8code = "0.4.3"
TimerOutputs = "0.5"
T8code = "0.4.3, 0.5"
TimerOutputs = "0.5.7"
Triangulate = "2.0"
TriplotBase = "0.1"
TriplotRecipes = "0.1"
Expand Down
85 changes: 85 additions & 0 deletions examples/tree_1d_dgsem/elixir_euler_quasi_1d_discontinuous.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,85 @@
using OrdinaryDiffEq
using Trixi

###############################################################################
# Semidiscretization of the quasi 1d compressible Euler equations
# See Chan et al. https://doi.org/10.48550/arXiv.2307.12089 for details

equations = CompressibleEulerEquationsQuasi1D(1.4)

"""
initial_condition_discontinuity(x, t, equations::CompressibleEulerEquations1D)
A discontinuous initial condition taken from
- Jesse Chan, Khemraj Shukla, Xinhui Wu, Ruofeng Liu, Prani Nalluri (2023)
High order entropy stable schemes for the quasi-one-dimensional
shallow water and compressible Euler equations
[DOI: 10.48550/arXiv.2307.12089](https://doi.org/10.48550/arXiv.2307.12089)
"""
function initial_condition_discontinuity(x, t,
equations::CompressibleEulerEquationsQuasi1D)
rho = (x[1] < 0) ? 3.4718 : 2.0
v1 = (x[1] < 0) ? -2.5923 : -3.0
p = (x[1] < 0) ? 5.7118 : 2.639
a = (x[1] < 0) ? 1.0 : 1.5

return prim2cons(SVector(rho, v1, p, a), equations)
end

initial_condition = initial_condition_discontinuity

surface_flux = (flux_lax_friedrichs, flux_nonconservative_chan_etal)
volume_flux = (flux_chan_etal, flux_nonconservative_chan_etal)

basis = LobattoLegendreBasis(3)
indicator_sc = IndicatorHennemannGassner(equations, basis,
alpha_max = 0.5,
alpha_min = 0.001,
alpha_smooth = true,
variable = density_pressure)
volume_integral = VolumeIntegralShockCapturingHG(indicator_sc;
volume_flux_dg = volume_flux,
volume_flux_fv = surface_flux)
solver = DGSEM(basis, surface_flux, volume_integral)

coordinates_min = (-1.0,)
coordinates_max = (1.0,)
mesh = TreeMesh(coordinates_min, coordinates_max,
initial_refinement_level = 6,
n_cells_max = 10_000)

semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver)

###############################################################################
# ODE solvers, callbacks etc.

tspan = (0.0, 2.0)
ode = semidiscretize(semi, tspan)

summary_callback = SummaryCallback()

analysis_interval = 100

analysis_callback = AnalysisCallback(semi, interval = analysis_interval)

alive_callback = AliveCallback(analysis_interval = analysis_interval)

save_solution = SaveSolutionCallback(interval = 100,
save_initial_solution = true,
save_final_solution = true,
solution_variables = cons2prim)

stepsize_callback = StepsizeCallback(cfl = 0.5)

callbacks = CallbackSet(summary_callback,
analysis_callback, alive_callback,
save_solution,
stepsize_callback)

###############################################################################
# run the simulation

sol = solve(ode, CarpenterKennedy2N54(williamson_condition = false),
dt = 1.0, # solve needs some value here but it will be overwritten by the stepsize_callback
save_everystep = false, callback = callbacks);
summary_callback() # print the timer summary
73 changes: 73 additions & 0 deletions examples/tree_1d_dgsem/elixir_euler_quasi_1d_ec.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,73 @@
using OrdinaryDiffEq
using Trixi

###############################################################################
# Semidiscretization of the quasi 1d compressible Euler equations with a discontinuous nozzle width function.
# See Chan et al. https://doi.org/10.48550/arXiv.2307.12089 for details

equations = CompressibleEulerEquationsQuasi1D(1.4)

# Setup a truly discontinuous density function and nozzle width for
# this academic testcase of entropy conservation. The errors from the analysis
# callback are not important but the entropy error for this test case
# `∑∂S/∂U ⋅ Uₜ` should be around machine roundoff.
# Works as intended for TreeMesh1D with `initial_refinement_level=6`. If the mesh
# refinement level is changed the initial condition below may need changed as well to
# ensure that the discontinuities lie on an element interface.
function initial_condition_ec(x, t, equations::CompressibleEulerEquationsQuasi1D)
v1 = 0.1
rho = 2.0 + 0.1 * x[1]
p = 3.0
a = 2.0 + x[1]

return prim2cons(SVector(rho, v1, p, a), equations)
end

initial_condition = initial_condition_ec

surface_flux = (flux_chan_etal, flux_nonconservative_chan_etal)
volume_flux = surface_flux
solver = DGSEM(polydeg = 4, surface_flux = surface_flux,
volume_integral = VolumeIntegralFluxDifferencing(volume_flux))

coordinates_min = (-1.0,)
coordinates_max = (1.0,)
mesh = TreeMesh(coordinates_min, coordinates_max,
initial_refinement_level = 6,
n_cells_max = 10_000)

semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver)

###############################################################################
# ODE solvers, callbacks etc.

tspan = (0.0, 0.4)
ode = semidiscretize(semi, tspan)

summary_callback = SummaryCallback()

analysis_interval = 100

analysis_callback = AnalysisCallback(semi, interval = analysis_interval)

alive_callback = AliveCallback(analysis_interval = analysis_interval)

save_solution = SaveSolutionCallback(interval = 100,
save_initial_solution = true,
save_final_solution = true,
solution_variables = cons2prim)

stepsize_callback = StepsizeCallback(cfl = 0.8)

callbacks = CallbackSet(summary_callback,
analysis_callback, alive_callback,
save_solution,
stepsize_callback)

###############################################################################
# run the simulation

sol = solve(ode, CarpenterKennedy2N54(williamson_condition = false),
dt = 1.0, # solve needs some value here but it will be overwritten by the stepsize_callback
save_everystep = false, callback = callbacks);
summary_callback() # print the timer summary
60 changes: 60 additions & 0 deletions examples/tree_1d_dgsem/elixir_euler_quasi_1d_source_terms.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,60 @@
using OrdinaryDiffEq
using Trixi
using ForwardDiff

###############################################################################
# Semidiscretization of the quasi 1d compressible Euler equations
# See Chan et al. https://doi.org/10.48550/arXiv.2307.12089 for details

equations = CompressibleEulerEquationsQuasi1D(1.4)

initial_condition = initial_condition_convergence_test

surface_flux = (flux_chan_etal, flux_nonconservative_chan_etal)
volume_flux = surface_flux
solver = DGSEM(polydeg = 4, surface_flux = surface_flux,
volume_integral = VolumeIntegralFluxDifferencing(volume_flux))

coordinates_min = -1.0
coordinates_max = 1.0
mesh = TreeMesh(coordinates_min, coordinates_max,
initial_refinement_level = 4,
n_cells_max = 10_000)

semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver,
source_terms = source_terms_convergence_test)

###############################################################################
# ODE solvers, callbacks etc.

tspan = (0.0, 2.0)
ode = semidiscretize(semi, tspan)

summary_callback = SummaryCallback()

analysis_interval = 100
analysis_callback = AnalysisCallback(semi, interval = analysis_interval,
extra_analysis_errors = (:l2_error_primitive,
:linf_error_primitive))

alive_callback = AliveCallback(analysis_interval = analysis_interval)

save_solution = SaveSolutionCallback(interval = 100,
save_initial_solution = true,
save_final_solution = true,
solution_variables = cons2prim)

stepsize_callback = StepsizeCallback(cfl = 0.8)

callbacks = CallbackSet(summary_callback,
analysis_callback, alive_callback,
save_solution,
stepsize_callback)

###############################################################################
# run the simulation

sol = solve(ode, CarpenterKennedy2N54(williamson_condition = false),
dt = 1.0, # solve needs some value here but it will be overwritten by the stepsize_callback
save_everystep = false, callback = callbacks);
summary_callback() # print the timer summary
Original file line number Diff line number Diff line change
Expand Up @@ -67,7 +67,7 @@ analysis_callback = AnalysisCallback(semi, interval = analysis_interval)

alive_callback = AliveCallback(analysis_interval = analysis_interval)

save_solution = SaveSolutionCallback(interval = 100,
save_solution = SaveSolutionCallback(dt = 0.1,
save_initial_solution = true,
save_final_solution = true,
solution_variables = cons2prim)
Expand Down
69 changes: 69 additions & 0 deletions examples/unstructured_2d_fdsbp/elixir_advection_basic.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,69 @@

using Downloads: download
using OrdinaryDiffEq
using Trixi

###############################################################################
# semidiscretization of the linear advection equation

advection_velocity = (0.2, -0.7)
equations = LinearScalarAdvectionEquation2D(advection_velocity)

###############################################################################
# Get the FDSBP approximation operator

D_SBP = derivative_operator(SummationByPartsOperators.MattssonAlmquistVanDerWeide2018Accurate(),
derivative_order = 1, accuracy_order = 4,
xmin = -1.0, xmax = 1.0, N = 15)
solver = FDSBP(D_SBP,
surface_integral = SurfaceIntegralStrongForm(flux_lax_friedrichs),
volume_integral = VolumeIntegralStrongForm())

###############################################################################
# Get the curved quad mesh from a file (downloads the file if not available locally)

default_mesh_file = joinpath(@__DIR__, "mesh_periodic_square_with_twist.mesh")
isfile(default_mesh_file) ||
download("https://gist.githubusercontent.com/andrewwinters5000/12ce661d7c354c3d94c74b964b0f1c96/raw/8275b9a60c6e7ebbdea5fc4b4f091c47af3d5273/mesh_periodic_square_with_twist.mesh",
default_mesh_file)
mesh_file = default_mesh_file

mesh = UnstructuredMesh2D(mesh_file, periodicity = true)

###############################################################################
# create the semidiscretization object

semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition_convergence_test,
solver)

###############################################################################
# ODE solvers, callbacks etc.

# Create ODE problem with time span from 0.0 to 1.0
ode = semidiscretize(semi, (0.0, 1.0))

# At the beginning of the main loop, the SummaryCallback prints a summary of the simulation setup
# and resets the timers
summary_callback = SummaryCallback()

# The AnalysisCallback allows to analyse the solution in regular intervals and prints the results
analysis_callback = AnalysisCallback(semi, interval = 100)

# The SaveSolutionCallback allows to save the solution to a file in regular intervals
save_solution = SaveSolutionCallback(interval = 100,
solution_variables = cons2prim)

# The StepsizeCallback handles the re-calculation of the maximum Δt after each time step
stepsize_callback = StepsizeCallback(cfl = 1.6)

# Create a CallbackSet to collect all callbacks such that they can be passed to the ODE solver
callbacks = CallbackSet(summary_callback, analysis_callback, save_solution,
stepsize_callback)

###############################################################################
# run the simulation

sol = solve(ode, CarpenterKennedy2N54(williamson_condition = false),
dt = 1.0, # solve needs some value here but it will be overwritten by the stepsize_callback
save_everystep = false, callback = callbacks);
summary_callback() # print the timer summary
Loading

0 comments on commit 60c5739

Please sign in to comment.