Skip to content

Commit

Permalink
Merge branch 'main' into subcell-limiting-positivity-nonlinear
Browse files Browse the repository at this point in the history
  • Loading branch information
bennibolm authored Jan 2, 2024
2 parents ccdc34e + a633f9c commit 0b15ada
Show file tree
Hide file tree
Showing 13 changed files with 949 additions and 24 deletions.
6 changes: 6 additions & 0 deletions NEWS.md
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,12 @@ Trixi.jl follows the interpretation of [semantic versioning (semver)](https://ju
used in the Julia ecosystem. Notable changes will be documented in this file
for human readability.

## Changes in the v0.6 lifecycle

#### Added
- AMR for hyperbolic-parabolic equations on 3D `P4estMesh`
- `flux_hllc` on non-cartesian meshes for `CompressibleEulerEquations{2,3}D`

## Changes when updating to v0.6 from v0.5.x

#### Added
Expand Down
113 changes: 113 additions & 0 deletions examples/p4est_3d_dgsem/elixir_navierstokes_blast_wave_amr.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,113 @@

using OrdinaryDiffEq
using Trixi

###############################################################################
# semidiscretization of the compressible Navier-Stokes equations

# TODO: parabolic; unify names of these accessor functions
prandtl_number() = 0.72
mu() = 6.25e-4 # equivalent to Re = 1600

equations = CompressibleEulerEquations3D(1.4)
equations_parabolic = CompressibleNavierStokesDiffusion3D(equations, mu = mu(),
Prandtl = prandtl_number())

function initial_condition_3d_blast_wave(x, t, equations::CompressibleEulerEquations3D)
rho_c = 1.0
p_c = 1.0
u_c = 0.0

rho_o = 0.125
p_o = 0.1
u_o = 0.0

rc = 0.5
r = sqrt(x[1]^2 + x[2]^2 + x[3]^2)
if r < rc
rho = rho_c
v1 = u_c
v2 = u_c
v3 = u_c
p = p_c
else
rho = rho_o
v1 = u_o
v2 = u_o
v3 = u_o
p = p_o
end

return prim2cons(SVector(rho, v1, v2, v3, p), equations)
end
initial_condition = initial_condition_3d_blast_wave

surface_flux = flux_lax_friedrichs
volume_flux = flux_ranocha
polydeg = 3
basis = LobattoLegendreBasis(polydeg)
indicator_sc = IndicatorHennemannGassner(equations, basis,
alpha_max = 1.0,
alpha_min = 0.001,
alpha_smooth = true,
variable = density_pressure)
volume_integral = VolumeIntegralShockCapturingHG(indicator_sc;
volume_flux_dg = volume_flux,
volume_flux_fv = surface_flux)

solver = DGSEM(polydeg = polydeg, surface_flux = surface_flux,
volume_integral = volume_integral)

coordinates_min = (-1.0, -1.0, -1.0) .* pi
coordinates_max = (1.0, 1.0, 1.0) .* pi

trees_per_dimension = (4, 4, 4)

mesh = P4estMesh(trees_per_dimension, polydeg = 3,
coordinates_min = coordinates_min, coordinates_max = coordinates_max,
periodicity = (true, true, true), initial_refinement_level = 1)

semi = SemidiscretizationHyperbolicParabolic(mesh, (equations, equations_parabolic),
initial_condition, solver)

###############################################################################
# ODE solvers, callbacks etc.

tspan = (0.0, 0.8)
ode = semidiscretize(semi, tspan)

summary_callback = SummaryCallback()

analysis_interval = 100
analysis_callback = AnalysisCallback(semi, interval = analysis_interval)
save_solution = SaveSolutionCallback(interval = analysis_interval,
save_initial_solution = true,
save_final_solution = true,
solution_variables = cons2prim)

amr_indicator = IndicatorLöhner(semi, variable = Trixi.density)

amr_controller = ControllerThreeLevel(semi, amr_indicator,
base_level = 0,
med_level = 1, med_threshold = 0.05,
max_level = 3, max_threshold = 0.1)
amr_callback = AMRCallback(semi, amr_controller,
interval = 10,
adapt_initial_condition = true,
adapt_initial_condition_only_refine = true)

alive_callback = AliveCallback(analysis_interval = analysis_interval)

callbacks = CallbackSet(summary_callback,
analysis_callback,
alive_callback,
amr_callback,
save_solution)

###############################################################################
# run the simulation

time_int_tol = 1e-8
sol = solve(ode, RDPK3SpFSAL49(); abstol = time_int_tol, reltol = time_int_tol,
ode_default_options()..., callback = callbacks)
summary_callback() # print the timer summary
106 changes: 106 additions & 0 deletions examples/p4est_3d_dgsem/elixir_navierstokes_taylor_green_vortex_amr.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,106 @@

using OrdinaryDiffEq
using Trixi

###############################################################################
# semidiscretization of the compressible Navier-Stokes equations

# TODO: parabolic; unify names of these accessor functions
prandtl_number() = 0.72
mu() = 6.25e-4 # equivalent to Re = 1600

equations = CompressibleEulerEquations3D(1.4)
equations_parabolic = CompressibleNavierStokesDiffusion3D(equations, mu = mu(),
Prandtl = prandtl_number())

"""
initial_condition_taylor_green_vortex(x, t, equations::CompressibleEulerEquations3D)
The classical Taylor-Green vortex.
"""
function initial_condition_taylor_green_vortex(x, t,
equations::CompressibleEulerEquations3D)
A = 1.0 # magnitude of speed
Ms = 0.1 # maximum Mach number

rho = 1.0
v1 = A * sin(x[1]) * cos(x[2]) * cos(x[3])
v2 = -A * cos(x[1]) * sin(x[2]) * cos(x[3])
v3 = 0.0
p = (A / Ms)^2 * rho / equations.gamma # scaling to get Ms
p = p +
1.0 / 16.0 * A^2 * rho *
(cos(2 * x[1]) * cos(2 * x[3]) + 2 * cos(2 * x[2]) + 2 * cos(2 * x[1]) +
cos(2 * x[2]) * cos(2 * x[3]))

return prim2cons(SVector(rho, v1, v2, v3, p), equations)
end
initial_condition = initial_condition_taylor_green_vortex

@inline function vel_mag(u, equations::CompressibleEulerEquations3D)
rho, rho_v1, rho_v2, rho_v3, _ = u
return sqrt(rho_v1^2 + rho_v2^2 + rho_v3^2) / rho
end

volume_flux = flux_ranocha
solver = DGSEM(polydeg = 3, surface_flux = flux_lax_friedrichs,
volume_integral = VolumeIntegralFluxDifferencing(volume_flux))

coordinates_min = (-1.0, -1.0, -1.0) .* pi
coordinates_max = (1.0, 1.0, 1.0) .* pi

trees_per_dimension = (2, 2, 2)

mesh = P4estMesh(trees_per_dimension, polydeg = 3,
coordinates_min = coordinates_min, coordinates_max = coordinates_max,
periodicity = (true, true, true), initial_refinement_level = 0)

semi = SemidiscretizationHyperbolicParabolic(mesh, (equations, equations_parabolic),
initial_condition, solver)

###############################################################################
# ODE solvers, callbacks etc.

tspan = (0.0, 0.5)
ode = semidiscretize(semi, tspan)

summary_callback = SummaryCallback()

analysis_interval = 50
analysis_callback = AnalysisCallback(semi, interval = analysis_interval,
save_analysis = true,
extra_analysis_integrals = (energy_kinetic,
energy_internal,
enstrophy))
save_solution = SaveSolutionCallback(interval = 100,
save_initial_solution = true,
save_final_solution = true,
solution_variables = cons2prim)

amr_indicator = IndicatorLöhner(semi, variable = vel_mag)

amr_controller = ControllerThreeLevel(semi, amr_indicator,
base_level = 0,
med_level = 1, med_threshold = 0.1,
max_level = 3, max_threshold = 0.2)

amr_callback = AMRCallback(semi, amr_controller,
interval = 5,
adapt_initial_condition = false,
adapt_initial_condition_only_refine = false)

alive_callback = AliveCallback(analysis_interval = analysis_interval)

callbacks = CallbackSet(summary_callback,
analysis_callback,
alive_callback,
amr_callback,
save_solution)

###############################################################################
# run the simulation

time_int_tol = 1e-8
sol = solve(ode, RDPK3SpFSAL49(); abstol = time_int_tol, reltol = time_int_tol,
ode_default_options()..., callback = callbacks)
summary_callback() # print the timer summary
4 changes: 2 additions & 2 deletions src/callbacks_step/amr_dg2d.jl
Original file line number Diff line number Diff line change
Expand Up @@ -137,7 +137,7 @@ function refine!(u_ode::AbstractVector, adaptor, mesh::Union{TreeMesh{2}, P4estM
end

function refine!(u_ode::AbstractVector, adaptor,
mesh::Union{TreeMesh{2}, P4estMesh{2}, TreeMesh{3}},
mesh::Union{TreeMesh{2}, P4estMesh{2}, TreeMesh{3}, P4estMesh{3}},
equations, dg::DGSEM, cache, cache_parabolic,
elements_to_refine)
# Call `refine!` for the hyperbolic part, which does the heavy lifting of
Expand Down Expand Up @@ -299,7 +299,7 @@ function coarsen!(u_ode::AbstractVector, adaptor,
end

function coarsen!(u_ode::AbstractVector, adaptor,
mesh::Union{TreeMesh{2}, P4estMesh{2}, TreeMesh{3}},
mesh::Union{TreeMesh{2}, P4estMesh{2}, TreeMesh{3}, P4estMesh{3}},
equations, dg::DGSEM, cache, cache_parabolic,
elements_to_remove)
# Call `coarsen!` for the hyperbolic part, which does the heavy lifting of
Expand Down
8 changes: 7 additions & 1 deletion src/callbacks_step/summary.jl
Original file line number Diff line number Diff line change
Expand Up @@ -152,7 +152,13 @@ function initialize_summary_callback(cb::DiscreteCallback, u, t, integrator;
Polyester.reset_threads!()
end

mpi_isroot() || return nothing
# The summary callback should only print information on the root process.
# However, all other MPI processes should also reset the timer so that
# it can be used to diagnose performance.
if !mpi_isroot()
reset_timer!(timer())
return nothing
end

print_startup_message()

Expand Down
102 changes: 97 additions & 5 deletions src/equations/compressible_euler_2d.jl
Original file line number Diff line number Diff line change
Expand Up @@ -1150,7 +1150,7 @@ end
end

"""
flux_hllc(u_ll, u_rr, orientation, equations::CompressibleEulerEquations2D)
flux_hllc(u_ll, u_rr, orientation_or_normal_direction, equations::CompressibleEulerEquations2D)
Computes the HLLC flux (HLL with Contact) for compressible Euler equations developed by E.F. Toro
[Lecture slides](http://www.prague-sum.com/download/2012/Toro_2-HLLC-RiemannSolver.pdf)
Expand Down Expand Up @@ -1185,18 +1185,18 @@ function flux_hllc(u_ll, u_rr, orientation::Integer,
if orientation == 1 # x-direction
vel_L = v1_ll
vel_R = v1_rr
ekin_roe = (sqrt_rho_ll * v2_ll + sqrt_rho_rr * v2_rr)^2
elseif orientation == 2 # y-direction
vel_L = v2_ll
vel_R = v2_rr
ekin_roe = (sqrt_rho_ll * v1_ll + sqrt_rho_rr * v1_rr)^2
end
vel_roe = (sqrt_rho_ll * vel_L + sqrt_rho_rr * vel_R) / sum_sqrt_rho
ekin_roe = 0.5 * (vel_roe^2 + ekin_roe / sum_sqrt_rho^2)
v1_roe = sqrt_rho_ll * v1_ll + sqrt_rho_rr * v1_rr
v2_roe = sqrt_rho_ll * v2_ll + sqrt_rho_rr * v2_rr
vel_roe_mag = (v1_roe^2 + v2_roe^2) / sum_sqrt_rho^2
H_ll = (rho_e_ll + p_ll) / rho_ll
H_rr = (rho_e_rr + p_rr) / rho_rr
H_roe = (sqrt_rho_ll * H_ll + sqrt_rho_rr * H_rr) / sum_sqrt_rho
c_roe = sqrt((equations.gamma - 1) * (H_roe - ekin_roe))
c_roe = sqrt((equations.gamma - 1) * (H_roe - 0.5 * vel_roe_mag))
Ssl = min(vel_L - c_ll, vel_roe - c_roe)
Ssr = max(vel_R + c_rr, vel_roe + c_roe)
sMu_L = Ssl - vel_L
Expand Down Expand Up @@ -1252,6 +1252,98 @@ function flux_hllc(u_ll, u_rr, orientation::Integer,
return SVector(f1, f2, f3, f4)
end

function flux_hllc(u_ll, u_rr, normal_direction::AbstractVector,
equations::CompressibleEulerEquations2D)
# Calculate primitive variables and speed of sound
rho_ll, v1_ll, v2_ll, p_ll = cons2prim(u_ll, equations)
rho_rr, v1_rr, v2_rr, p_rr = cons2prim(u_rr, equations)

v_dot_n_ll = v1_ll * normal_direction[1] + v2_ll * normal_direction[2]
v_dot_n_rr = v1_rr * normal_direction[1] + v2_rr * normal_direction[2]

norm_ = norm(normal_direction)
norm_sq = norm_ * norm_
inv_norm_sq = inv(norm_sq)

c_ll = sqrt(equations.gamma * p_ll / rho_ll) * norm_
c_rr = sqrt(equations.gamma * p_rr / rho_rr) * norm_

# Obtain left and right fluxes
f_ll = flux(u_ll, normal_direction, equations)
f_rr = flux(u_rr, normal_direction, equations)

# Compute Roe averages
sqrt_rho_ll = sqrt(rho_ll)
sqrt_rho_rr = sqrt(rho_rr)
sum_sqrt_rho = sqrt_rho_ll + sqrt_rho_rr

v1_roe = (sqrt_rho_ll * v1_ll + sqrt_rho_rr * v1_rr) / sum_sqrt_rho
v2_roe = (sqrt_rho_ll * v2_ll + sqrt_rho_rr * v2_rr) / sum_sqrt_rho
vel_roe = v1_roe * normal_direction[1] + v2_roe * normal_direction[2]
vel_roe_mag = v1_roe^2 + v2_roe^2

e_ll = u_ll[4] / rho_ll
e_rr = u_rr[4] / rho_rr

H_ll = (u_ll[4] + p_ll) / rho_ll
H_rr = (u_rr[4] + p_rr) / rho_rr

H_roe = (sqrt_rho_ll * H_ll + sqrt_rho_rr * H_rr) / sum_sqrt_rho
c_roe = sqrt((equations.gamma - 1) * (H_roe - 0.5 * vel_roe_mag)) * norm_

Ssl = min(v_dot_n_ll - c_ll, vel_roe - c_roe)
Ssr = max(v_dot_n_rr + c_rr, vel_roe + c_roe)
sMu_L = Ssl - v_dot_n_ll
sMu_R = Ssr - v_dot_n_rr

if Ssl >= 0.0
f1 = f_ll[1]
f2 = f_ll[2]
f3 = f_ll[3]
f4 = f_ll[4]
elseif Ssr <= 0.0
f1 = f_rr[1]
f2 = f_rr[2]
f3 = f_rr[3]
f4 = f_rr[4]
else
SStar = (rho_ll * v_dot_n_ll * sMu_L - rho_rr * v_dot_n_rr * sMu_R +
(p_rr - p_ll) * norm_sq) / (rho_ll * sMu_L - rho_rr * sMu_R)
if Ssl <= 0.0 <= SStar
densStar = rho_ll * sMu_L / (Ssl - SStar)
enerStar = e_ll +
(SStar - v_dot_n_ll) *
(SStar * inv_norm_sq + p_ll / (rho_ll * sMu_L))
UStar1 = densStar
UStar2 = densStar *
(v1_ll + (SStar - v_dot_n_ll) * normal_direction[1] * inv_norm_sq)
UStar3 = densStar *
(v2_ll + (SStar - v_dot_n_ll) * normal_direction[2] * inv_norm_sq)
UStar4 = densStar * enerStar
f1 = f_ll[1] + Ssl * (UStar1 - u_ll[1])
f2 = f_ll[2] + Ssl * (UStar2 - u_ll[2])
f3 = f_ll[3] + Ssl * (UStar3 - u_ll[3])
f4 = f_ll[4] + Ssl * (UStar4 - u_ll[4])
else
densStar = rho_rr * sMu_R / (Ssr - SStar)
enerStar = e_rr +
(SStar - v_dot_n_rr) *
(SStar * inv_norm_sq + p_rr / (rho_rr * sMu_R))
UStar1 = densStar
UStar2 = densStar *
(v1_rr + (SStar - v_dot_n_rr) * normal_direction[1] * inv_norm_sq)
UStar3 = densStar *
(v2_rr + (SStar - v_dot_n_rr) * normal_direction[2] * inv_norm_sq)
UStar4 = densStar * enerStar
f1 = f_rr[1] + Ssr * (UStar1 - u_rr[1])
f2 = f_rr[2] + Ssr * (UStar2 - u_rr[2])
f3 = f_rr[3] + Ssr * (UStar3 - u_rr[3])
f4 = f_rr[4] + Ssr * (UStar4 - u_rr[4])
end
end
return SVector(f1, f2, f3, f4)
end

"""
min_max_speed_einfeldt(u_ll, u_rr, orientation, equations::CompressibleEulerEquations2D)
Expand Down
Loading

0 comments on commit 0b15ada

Please sign in to comment.