-
Notifications
You must be signed in to change notification settings - Fork 114
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'main' into subcell-limiting-positivity-nonlinear
- Loading branch information
Showing
13 changed files
with
949 additions
and
24 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
113 changes: 113 additions & 0 deletions
113
examples/p4est_3d_dgsem/elixir_navierstokes_blast_wave_amr.jl
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,113 @@ | ||
|
||
using OrdinaryDiffEq | ||
using Trixi | ||
|
||
############################################################################### | ||
# semidiscretization of the compressible Navier-Stokes equations | ||
|
||
# TODO: parabolic; unify names of these accessor functions | ||
prandtl_number() = 0.72 | ||
mu() = 6.25e-4 # equivalent to Re = 1600 | ||
|
||
equations = CompressibleEulerEquations3D(1.4) | ||
equations_parabolic = CompressibleNavierStokesDiffusion3D(equations, mu = mu(), | ||
Prandtl = prandtl_number()) | ||
|
||
function initial_condition_3d_blast_wave(x, t, equations::CompressibleEulerEquations3D) | ||
rho_c = 1.0 | ||
p_c = 1.0 | ||
u_c = 0.0 | ||
|
||
rho_o = 0.125 | ||
p_o = 0.1 | ||
u_o = 0.0 | ||
|
||
rc = 0.5 | ||
r = sqrt(x[1]^2 + x[2]^2 + x[3]^2) | ||
if r < rc | ||
rho = rho_c | ||
v1 = u_c | ||
v2 = u_c | ||
v3 = u_c | ||
p = p_c | ||
else | ||
rho = rho_o | ||
v1 = u_o | ||
v2 = u_o | ||
v3 = u_o | ||
p = p_o | ||
end | ||
|
||
return prim2cons(SVector(rho, v1, v2, v3, p), equations) | ||
end | ||
initial_condition = initial_condition_3d_blast_wave | ||
|
||
surface_flux = flux_lax_friedrichs | ||
volume_flux = flux_ranocha | ||
polydeg = 3 | ||
basis = LobattoLegendreBasis(polydeg) | ||
indicator_sc = IndicatorHennemannGassner(equations, basis, | ||
alpha_max = 1.0, | ||
alpha_min = 0.001, | ||
alpha_smooth = true, | ||
variable = density_pressure) | ||
volume_integral = VolumeIntegralShockCapturingHG(indicator_sc; | ||
volume_flux_dg = volume_flux, | ||
volume_flux_fv = surface_flux) | ||
|
||
solver = DGSEM(polydeg = polydeg, surface_flux = surface_flux, | ||
volume_integral = volume_integral) | ||
|
||
coordinates_min = (-1.0, -1.0, -1.0) .* pi | ||
coordinates_max = (1.0, 1.0, 1.0) .* pi | ||
|
||
trees_per_dimension = (4, 4, 4) | ||
|
||
mesh = P4estMesh(trees_per_dimension, polydeg = 3, | ||
coordinates_min = coordinates_min, coordinates_max = coordinates_max, | ||
periodicity = (true, true, true), initial_refinement_level = 1) | ||
|
||
semi = SemidiscretizationHyperbolicParabolic(mesh, (equations, equations_parabolic), | ||
initial_condition, solver) | ||
|
||
############################################################################### | ||
# ODE solvers, callbacks etc. | ||
|
||
tspan = (0.0, 0.8) | ||
ode = semidiscretize(semi, tspan) | ||
|
||
summary_callback = SummaryCallback() | ||
|
||
analysis_interval = 100 | ||
analysis_callback = AnalysisCallback(semi, interval = analysis_interval) | ||
save_solution = SaveSolutionCallback(interval = analysis_interval, | ||
save_initial_solution = true, | ||
save_final_solution = true, | ||
solution_variables = cons2prim) | ||
|
||
amr_indicator = IndicatorLöhner(semi, variable = Trixi.density) | ||
|
||
amr_controller = ControllerThreeLevel(semi, amr_indicator, | ||
base_level = 0, | ||
med_level = 1, med_threshold = 0.05, | ||
max_level = 3, max_threshold = 0.1) | ||
amr_callback = AMRCallback(semi, amr_controller, | ||
interval = 10, | ||
adapt_initial_condition = true, | ||
adapt_initial_condition_only_refine = true) | ||
|
||
alive_callback = AliveCallback(analysis_interval = analysis_interval) | ||
|
||
callbacks = CallbackSet(summary_callback, | ||
analysis_callback, | ||
alive_callback, | ||
amr_callback, | ||
save_solution) | ||
|
||
############################################################################### | ||
# run the simulation | ||
|
||
time_int_tol = 1e-8 | ||
sol = solve(ode, RDPK3SpFSAL49(); abstol = time_int_tol, reltol = time_int_tol, | ||
ode_default_options()..., callback = callbacks) | ||
summary_callback() # print the timer summary |
106 changes: 106 additions & 0 deletions
106
examples/p4est_3d_dgsem/elixir_navierstokes_taylor_green_vortex_amr.jl
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,106 @@ | ||
|
||
using OrdinaryDiffEq | ||
using Trixi | ||
|
||
############################################################################### | ||
# semidiscretization of the compressible Navier-Stokes equations | ||
|
||
# TODO: parabolic; unify names of these accessor functions | ||
prandtl_number() = 0.72 | ||
mu() = 6.25e-4 # equivalent to Re = 1600 | ||
|
||
equations = CompressibleEulerEquations3D(1.4) | ||
equations_parabolic = CompressibleNavierStokesDiffusion3D(equations, mu = mu(), | ||
Prandtl = prandtl_number()) | ||
|
||
""" | ||
initial_condition_taylor_green_vortex(x, t, equations::CompressibleEulerEquations3D) | ||
The classical Taylor-Green vortex. | ||
""" | ||
function initial_condition_taylor_green_vortex(x, t, | ||
equations::CompressibleEulerEquations3D) | ||
A = 1.0 # magnitude of speed | ||
Ms = 0.1 # maximum Mach number | ||
|
||
rho = 1.0 | ||
v1 = A * sin(x[1]) * cos(x[2]) * cos(x[3]) | ||
v2 = -A * cos(x[1]) * sin(x[2]) * cos(x[3]) | ||
v3 = 0.0 | ||
p = (A / Ms)^2 * rho / equations.gamma # scaling to get Ms | ||
p = p + | ||
1.0 / 16.0 * A^2 * rho * | ||
(cos(2 * x[1]) * cos(2 * x[3]) + 2 * cos(2 * x[2]) + 2 * cos(2 * x[1]) + | ||
cos(2 * x[2]) * cos(2 * x[3])) | ||
|
||
return prim2cons(SVector(rho, v1, v2, v3, p), equations) | ||
end | ||
initial_condition = initial_condition_taylor_green_vortex | ||
|
||
@inline function vel_mag(u, equations::CompressibleEulerEquations3D) | ||
rho, rho_v1, rho_v2, rho_v3, _ = u | ||
return sqrt(rho_v1^2 + rho_v2^2 + rho_v3^2) / rho | ||
end | ||
|
||
volume_flux = flux_ranocha | ||
solver = DGSEM(polydeg = 3, surface_flux = flux_lax_friedrichs, | ||
volume_integral = VolumeIntegralFluxDifferencing(volume_flux)) | ||
|
||
coordinates_min = (-1.0, -1.0, -1.0) .* pi | ||
coordinates_max = (1.0, 1.0, 1.0) .* pi | ||
|
||
trees_per_dimension = (2, 2, 2) | ||
|
||
mesh = P4estMesh(trees_per_dimension, polydeg = 3, | ||
coordinates_min = coordinates_min, coordinates_max = coordinates_max, | ||
periodicity = (true, true, true), initial_refinement_level = 0) | ||
|
||
semi = SemidiscretizationHyperbolicParabolic(mesh, (equations, equations_parabolic), | ||
initial_condition, solver) | ||
|
||
############################################################################### | ||
# ODE solvers, callbacks etc. | ||
|
||
tspan = (0.0, 0.5) | ||
ode = semidiscretize(semi, tspan) | ||
|
||
summary_callback = SummaryCallback() | ||
|
||
analysis_interval = 50 | ||
analysis_callback = AnalysisCallback(semi, interval = analysis_interval, | ||
save_analysis = true, | ||
extra_analysis_integrals = (energy_kinetic, | ||
energy_internal, | ||
enstrophy)) | ||
save_solution = SaveSolutionCallback(interval = 100, | ||
save_initial_solution = true, | ||
save_final_solution = true, | ||
solution_variables = cons2prim) | ||
|
||
amr_indicator = IndicatorLöhner(semi, variable = vel_mag) | ||
|
||
amr_controller = ControllerThreeLevel(semi, amr_indicator, | ||
base_level = 0, | ||
med_level = 1, med_threshold = 0.1, | ||
max_level = 3, max_threshold = 0.2) | ||
|
||
amr_callback = AMRCallback(semi, amr_controller, | ||
interval = 5, | ||
adapt_initial_condition = false, | ||
adapt_initial_condition_only_refine = false) | ||
|
||
alive_callback = AliveCallback(analysis_interval = analysis_interval) | ||
|
||
callbacks = CallbackSet(summary_callback, | ||
analysis_callback, | ||
alive_callback, | ||
amr_callback, | ||
save_solution) | ||
|
||
############################################################################### | ||
# run the simulation | ||
|
||
time_int_tol = 1e-8 | ||
sol = solve(ode, RDPK3SpFSAL49(); abstol = time_int_tol, reltol = time_int_tol, | ||
ode_default_options()..., callback = callbacks) | ||
summary_callback() # print the timer summary |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.