Skip to content

Commit

Permalink
Update Triton version to 24.08 (2.49)
Browse files Browse the repository at this point in the history
  • Loading branch information
piotrm-nvidia committed Sep 16, 2024
1 parent 2f36235 commit 26dc739
Show file tree
Hide file tree
Showing 21 changed files with 28 additions and 30 deletions.
6 changes: 2 additions & 4 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -16,11 +16,9 @@ limitations under the License.

# Changelog

## Unreleased
## 0.5.11 (2024-09-18)

[//]: <> (put here on external component update with short summary what change or link to changelog)

- Version of [Triton Inference Server](https://github.com/triton-inference-server/) embedded in wheel: [2.48.0](https://github.com/triton-inference-server/server/releases/tag/v2.48.0)
- Version of [Triton Inference Server](https://github.com/triton-inference-server/) embedded in wheel: [2.49.0](https://github.com/triton-inference-server/server/releases/tag/v2.49.0)

## 0.5.10 (2024-08-02)

Expand Down
4 changes: 2 additions & 2 deletions Makefile
Original file line number Diff line number Diff line change
Expand Up @@ -36,8 +36,8 @@ export PRINT_HELP_PYSCRIPT

BROWSER := python -c "$$BROWSER_PYSCRIPT"
PIP_INSTALL := pip install --extra-index-url https://pypi.ngc.nvidia.com
TEST_CONTAINER_VERSION ?= 24.07
TRITONSERVER_IMAGE_VERSION ?= 24.07
TEST_CONTAINER_VERSION ?= 24.08
TRITONSERVER_IMAGE_VERSION ?= 24.08
TRITONSERVER_IMAGE_NAME = nvcr.io/nvidia/tritonserver:$(TRITONSERVER_IMAGE_VERSION)-pyt-python-py3
TRITONSERVER_OUTPUT_DIR = ${PWD}/pytriton/tritonserver
TRITONSERVER_BASENAME = pytriton
Expand Down
2 changes: 1 addition & 1 deletion examples/dali_resnet101_pytorch/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -89,7 +89,7 @@ To run this example, please follow these steps:
2. Run the NVIDIA PyTorch container:

```shell
$ docker run -it --gpus all --shm-size 8gb -v $(pwd):/dali -w /dali --net host nvcr.io/nvidia/pytorch:24.07-py3 bash
$ docker run -it --gpus all --shm-size 8gb -v $(pwd):/dali -w /dali --net host nvcr.io/nvidia/pytorch:24.08-py3 bash
```

3. Install PyTriton following the [installation instruction](../../README.md#installation)
Expand Down
4 changes: 2 additions & 2 deletions examples/huggingface_bart_pytorch/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -40,7 +40,7 @@ pip install torch

Or you can use NVIDIA PyTorch container:
```shell
docker run -it --gpus 1 --shm-size 8gb -v {repository_path}:{repository_path} -w {repository_path} nvcr.io/nvidia/pytorch:24.07-py3 bash
docker run -it --gpus 1 --shm-size 8gb -v {repository_path}:{repository_path} -w {repository_path} nvcr.io/nvidia/pytorch:24.08-py3 bash
```

If you select to use container we recommend to install
Expand Down Expand Up @@ -97,7 +97,7 @@ export DOCKER_IMAGE_NAME_WITH_TAG=localhost:5000/bart-pytorch-example:latest

```shell
# Export the base image used for build
export FROM_IMAGE_NAME=nvcr.io/nvidia/pytorch:24.07-py3
export FROM_IMAGE_NAME=nvcr.io/nvidia/pytorch:24.08-py3
./examples/huggingface_bart_pytorch/kubernetes/build_and_push.sh
```
**Note**: By default the container is built using `pytriton` package from `GitHub`. To build container with wheel built
Expand Down
2 changes: 1 addition & 1 deletion examples/huggingface_bart_pytorch/kubernetes/Dockerfile
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
ARG FROM_IMAGE_NAME=nvcr.io/nvidia/pytorch:24.07-py3
ARG FROM_IMAGE_NAME=nvcr.io/nvidia/pytorch:24.08-py3
ARG BUILD_FROM

FROM ${FROM_IMAGE_NAME} as base
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@ fi
if [ -z ${FROM_IMAGE_NAME} ]; then
echo "Provide Docker image that would be used as base image"
echo "Example:"
echo " export FROM_IMAGE_NAME=nvcr.io/nvidia/pytorch:24.07-py3"
echo " export FROM_IMAGE_NAME=nvcr.io/nvidia/pytorch:24.08-py3"
exit 1
fi

Expand Down
4 changes: 2 additions & 2 deletions examples/huggingface_dialogpt_streaming_pytorch/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -40,7 +40,7 @@ pip install torch

Or you can use NVIDIA PyTorch container:
```shell
docker run -it --gpus 1 --shm-size 8gb -v {repository_path}:{repository_path} -w {repository_path} nvcr.io/nvidia/pytorch:24.07-py3 bash
docker run -it --gpus 1 --shm-size 8gb -v {repository_path}:{repository_path} -w {repository_path} nvcr.io/nvidia/pytorch:24.08-py3 bash
```

If you select to use container we recommend to install
Expand Down Expand Up @@ -97,7 +97,7 @@ export DOCKER_IMAGE_NAME_WITH_TAG=localhost:5000/bart-pytorch-example:latest

```shell
# Export the base image used for build
export FROM_IMAGE_NAME=nvcr.io/nvidia/pytorch:24.07-py3
export FROM_IMAGE_NAME=nvcr.io/nvidia/pytorch:24.08-py3
./examples/huggingface_bart_pytorch/kubernetes/build_and_push.sh
```
**Note**: By default the container is built using `pytriton` package from `GitHub`. To build container with wheel built
Expand Down
2 changes: 1 addition & 1 deletion examples/huggingface_opt_multinode_jax/Dockerfile
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
ARG FROM_IMAGE_NAME=nvcr.io/nvidia/tensorflow:24.07-tf2-py3
ARG FROM_IMAGE_NAME=nvcr.io/nvidia/tensorflow:24.08-tf2-py3
FROM ${FROM_IMAGE_NAME}

ENV XLA_PYTHON_CLIENT_PREALLOCATE=false
Expand Down
4 changes: 2 additions & 2 deletions examples/huggingface_opt_multinode_jax/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -90,7 +90,7 @@ The easiest way of running this example is inside a [nvcr.io](https://catalog.ng
container. Example `Dockerfile` that can be used to run the server:

```Dockerfile
ARG FROM_IMAGE_NAME=nvcr.io/nvidia/tensorflow:24.07-tf2-py3
ARG FROM_IMAGE_NAME=nvcr.io/nvidia/tensorflow:24.08-tf2-py3
FROM ${FROM_IMAGE_NAME}

ENV XLA_PYTHON_CLIENT_PREALLOCATE=false
Expand Down Expand Up @@ -181,7 +181,7 @@ export DOCKER_IMAGE_NAME_WITH_TAG=localhost:5000/jax-example:latest

```shell
# Export the base image used for build. We use TensorFlow image for JAX
export FROM_IMAGE_NAME=nvcr.io/nvidia/tensorflow:24.07-tf2-py3
export FROM_IMAGE_NAME=nvcr.io/nvidia/tensorflow:24.08-tf2-py3
./examples/huggingface_opt_multinode_jax/kubernetes/build_and_push.sh
```
**Note**: By default the container is built using `pytriton` package from pypi.org. To build container with wheel built
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
ARG FROM_IMAGE_NAME=nvcr.io/nvidia/tensorflow:24.07-tf2-py3
ARG FROM_IMAGE_NAME=nvcr.io/nvidia/tensorflow:24.08-tf2-py3
ARG BUILD_FROM=pypi

FROM ${FROM_IMAGE_NAME} as base
Expand Down
4 changes: 2 additions & 2 deletions examples/huggingface_resnet_pytorch/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -41,7 +41,7 @@ pip install torch
Or you can use NVIDIA PyTorch container:

```shell
docker run -it --gpus 1 --shm-size 8gb -v {repository_path}:{repository_path} -w {repository_path} nvcr.io/nvidia/pytorch:24.07-py3 bash
docker run -it --gpus 1 --shm-size 8gb -v {repository_path}:{repository_path} -w {repository_path} nvcr.io/nvidia/pytorch:24.08-py3 bash
```

If you select to use container we recommend to install
Expand Down Expand Up @@ -98,7 +98,7 @@ export DOCKER_IMAGE_NAME_WITH_TAG=localhost:5000/resnet-pytorch-example:latest

```shell
# Export the base image used for build
export FROM_IMAGE_NAME=nvcr.io/nvidia/pytorch:24.07-py3
export FROM_IMAGE_NAME=nvcr.io/nvidia/pytorch:24.08-py3
./examples/huggingface_resnet_pytorch/kubernetes/build_and_push.sh
```

Expand Down
2 changes: 1 addition & 1 deletion examples/huggingface_resnet_pytorch/kubernetes/Dockerfile
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
ARG FROM_IMAGE_NAME=nvcr.io/nvidia/pytorch:24.07-py3
ARG FROM_IMAGE_NAME=nvcr.io/nvidia/pytorch:24.08-py3
ARG BUILD_FROM

FROM ${FROM_IMAGE_NAME} as base
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@ fi
if [ -z ${FROM_IMAGE_NAME} ]; then
echo "Provide Docker image that would be used as base image"
echo "Example:"
echo " export FROM_IMAGE_NAME=nvcr.io/nvidia/pytorch:24.07-py3"
echo " export FROM_IMAGE_NAME=nvcr.io/nvidia/pytorch:24.08-py3"
exit 1
fi

Expand Down
4 changes: 2 additions & 2 deletions examples/huggingface_stable_diffusion/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -41,7 +41,7 @@ pip install torch
Or you can use NVIDIA PyTorch container:

```shell
docker run -it --gpus 1 --shm-size 8gb -v {repository_path}:{repository_path} -w {repository_path} nvcr.io/nvidia/pytorch:24.07-py3 bash
docker run -it --gpus 1 --shm-size 8gb -v {repository_path}:{repository_path} -w {repository_path} nvcr.io/nvidia/pytorch:24.08-py3 bash
```

If you select to use container we recommend to install
Expand Down Expand Up @@ -99,7 +99,7 @@ export DOCKER_IMAGE_NAME_WITH_TAG=localhost:5000/stable-diffusion-example:latest

```shell
# Export the base image used for build
export FROM_IMAGE_NAME=nvcr.io/nvidia/pytorch:24.07-py3
export FROM_IMAGE_NAME=nvcr.io/nvidia/pytorch:24.08-py3
./examples/huggingface_stable_diffusion/kubernetes/build_and_push.sh
```

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
ARG FROM_IMAGE_NAME=nvcr.io/nvidia/pytorch:24.07-py3
ARG FROM_IMAGE_NAME=nvcr.io/nvidia/pytorch:24.08-py3
ARG BUILD_FROM

FROM ${FROM_IMAGE_NAME} as base
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@ fi
if [ -z ${FROM_IMAGE_NAME} ]; then
echo "Provide Docker image that would be used as base image"
echo "Example:"
echo " export FROM_IMAGE_NAME=nvcr.io/nvidia/pytorch:24.07-py3"
echo " export FROM_IMAGE_NAME=nvcr.io/nvidia/pytorch:24.08-py3"
exit 1
fi

Expand Down
2 changes: 1 addition & 1 deletion examples/linear_random_pytorch/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -35,7 +35,7 @@ pip install torch

Or you can use NVIDIA PyTorch container:
```shell
docker run -it --gpus 1 --shm-size 8gb -v {repository_path}:{repository_path} -w {repository_path} nvcr.io/nvidia/pytorch:24.07-py3 bash
docker run -it --gpus 1 --shm-size 8gb -v {repository_path}:{repository_path} -w {repository_path} nvcr.io/nvidia/pytorch:24.08-py3 bash
```

If you select to use container we recommend to install
Expand Down
2 changes: 1 addition & 1 deletion examples/mlp_random_tensorflow2/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -35,7 +35,7 @@ pip install tensorflow

Or you can use NVIDIA TensorFlow container:
```shell
docker run -it --gpus 1 --shm-size 8gb -v {repository_path}:{repository_path} -w {repository_path} nvcr.io/nvidia/tensorflow:24.07-tf2-py3 bash
docker run -it --gpus 1 --shm-size 8gb -v {repository_path}:{repository_path} -w {repository_path} nvcr.io/nvidia/tensorflow:24.08-tf2-py3 bash
```

If you select to use container we recommend to install
Expand Down
2 changes: 1 addition & 1 deletion examples/multi_instance_resnet50_pytorch/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -37,7 +37,7 @@ pip install torch

Or you can use NVIDIA PyTorch container:
```shell
docker run -it --gpus 1 --shm-size 8gb -v {repository_path}:{repository_path} -w {repository_path} nvcr.io/nvidia/pytorch:24.07-py3 bash
docker run -it --gpus 1 --shm-size 8gb -v {repository_path}:{repository_path} -w {repository_path} nvcr.io/nvidia/pytorch:24.08-py3 bash
```

If you select to use container we recommend to install
Expand Down
2 changes: 1 addition & 1 deletion examples/perf_analyzer/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -38,7 +38,7 @@ pip install torch
Or you can use NVIDIA PyTorch container:

```shell
docker run -it --gpus 1 --shm-size 8gb -v {repository_path}:{repository_path} -w {repository_path} nvcr.io/nvidia/pytorch:24.07-py3 bash
docker run -it --gpus 1 --shm-size 8gb -v {repository_path}:{repository_path} -w {repository_path} nvcr.io/nvidia/pytorch:24.08-py3 bash
```

If you select to use container we recommend to install
Expand Down
2 changes: 1 addition & 1 deletion pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -41,7 +41,7 @@ dependencies = [
"protobuf >= 3.7",
"pyzmq >= 23.0",
"sh >= 1.14",
"tritonclient[grpc,http] ~= 2.48",
"tritonclient[grpc,http] ~= 2.49",
"grpcio >= 1.64.1", # fix grpc client compatibility
"typing_inspect >= 0.6.0",
"wrapt >= 1.11",
Expand Down

0 comments on commit 26dc739

Please sign in to comment.