Skip to content

ti3x/encodec.cpp

 
 

Repository files navigation

encodec.cpp

encodec.cpp

Actions Status License: MIT

High-performance inference of Meta's Encodec deep learning based audio codec model:

  • Plain C/C++ implementation without dependencies using ggml

Demo

Here is a demo of running Encodec on a single M1 MacBook Pro:

demo.mp4

Roadmap

  • Support of 24Khz model
  • Mixed F16 / F32 precision
  • 4-bit and 8-bit quantization
  • Metal support
  • cuBLAS support

Implementation details

  • The core tensor operations are implemented in C (ggml.h / ggml.c)
  • The encoder-decoder architecture and the high-level C-style API are implemented in C++ (encodec.h / encodec.cpp)
  • Basic usage is demonstrated in main.cpp.

Usage

Here are the steps for the bark model.

Get the code

git clone --recurse-submodules https://github.com/PABannier/encodec.cpp.git
cd encodec.cpp

Build

In order to build encodec.cpp you must use CMake:

mkdir build
cd build
cmake ..
cmake --build . --config Release

Using Metal

Offloading to GPU is possible with the Metal backend for MacOS. Performance are not improved but the power consumption and CPU activity is reduced.

cmake -DGGML_METAL=ON -DBUILD_SHARED_LIBS=Off ..
cmake --build . --config Release

Using cuBLAS

The inference can be offloaded on a CUDA backend with cuBLAS.

cmake -DGGML_CUBLAS=ON -DBUILD_SHARED_LIBS=Off ..
cmake --build . --config Release

About

Port of Meta's Encodec in C/C++

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • C++ 90.3%
  • Python 8.1%
  • CMake 1.6%