This package provides functionality to directly estimate a density ratio
- Fast: Computationally intensive code is executed in
C++
usingRcpp
andRcppArmadillo
. - Automatic: Good default hyperparameters that can be optimized in
cross-validation (we do recommend understanding those parameters
before using
densityratio
in practice). - Complete: Several density ratio estimation methods, such as
unconstrained least-squares importance fitting (
ulsif()
), Kullback-Leibler importance estimation procedure (kliep()
), ratio of estimated densities (naive()
), ratio of estimated densities after dimension reduction (naivesubspace()
), and least-squares heterodistributional subspace search (lhss()
; experimental). - User-friendly: Simple user interface, default
predict()
,print()
andsummary()
functions for all density ratio estimation methods; built-in data sets for quick testing.
You can install the development version of densityratio
from
R-universe with:
install.packages('densityratio', repos = 'https://thomvolker.r-universe.dev')
The package contains several functions to estimate the density ratio
between the numerator data and the denominator data. To illustrate the
functionality, we make use of the in-built simulated data sets
numerator_data
and denominator_data
, that both consist of the same
five variables.
library(densityratio)
head(numerator_data)
#> # A tibble: 6 × 5
#> x1 x2 x3 x4 x5
#> <fct> <fct> <dbl> <dbl> <dbl>
#> 1 A G1 -0.0299 0.967 -1.26
#> 2 C G1 2.29 -0.475 2.40
#> 3 A G1 1.37 0.577 -0.172
#> 4 B G2 1.44 -0.193 -0.708
#> 5 A G1 1.01 2.23 2.01
#> 6 C G2 1.83 0.762 3.71
fit <- ulsif(
df_numerator = numerator_data$x5,
df_denominator = denominator_data$x5,
nsigma = 5,
nlambda = 5
)
class(fit)
#> [1] "ulsif"
We can ask for the summary()
of the estimated density ratio object,
that contains the optimal kernel weights (optimized using
cross-validation) and a measure of discrepancy between the numerator and
denominator densities.
summary(fit)
#>
#> Call:
#> ulsif(df_numerator = numerator_data$x5, df_denominator = denominator_data$x5, nsigma = 5, nlambda = 5)
#>
#> Kernel Information:
#> Kernel type: Gaussian with L2 norm distances
#> Number of kernels: 200
#>
#> Optimal sigma: 0.3726142
#> Optimal lambda: 0.03162278
#> Optimal kernel weights (loocv): num [1:201] 0.43926 0.01016 0.00407 0.01563 0.01503 ...
#>
#> Pearson divergence between P(nu) and P(de): 0.2801
#> For a two-sample homogeneity test, use 'summary(x, test = TRUE)'.
To formally evaluate whether the numerator and denominator densities differ significantly, you can perform a two-sample homogeneity test as follows.
summary(fit, test = TRUE)
#>
#> Call:
#> ulsif(df_numerator = numerator_data$x5, df_denominator = denominator_data$x5, nsigma = 5, nlambda = 5)
#>
#> Kernel Information:
#> Kernel type: Gaussian with L2 norm distances
#> Number of kernels: 200
#>
#> Optimal sigma: 0.3726142
#> Optimal lambda: 0.03162278
#> Optimal kernel weights (loocv): num [1:201] 0.43926 0.01016 0.00407 0.01563 0.01503 ...
#>
#> Pearson divergence between P(nu) and P(de): 0.2801
#> Pr(P(nu)=P(de)) < .001
#> Bonferroni-corrected for testing with r(x) = P(nu)/P(de) AND r*(x) = P(de)/P(nu).
The probability that numerator and denominator samples share a common data generating mechanism is very small.
The ulsif
-object also contains the (hyper-)parameters used in
estimating the density ratio, such as the centers used in constructing
the Gaussian kernels (fit$centers
), the different bandwidth parameters
(fit$sigma
) and the regularization parameters (fit$lambda
). Using
these variables, we can obtain the estimated density ratio using
predict()
.
# obtain predictions for the numerator samples
newx5 <- seq(from = -3, to = 6, by = 0.05)
pred <- predict(fit, newdata = newx5)
ggplot() +
geom_point(aes(x = newx5, y = pred, col = "ulsif estimates")) +
stat_function(mapping = aes(col = "True density ratio"),
fun = dratio,
args = list(p = 0.4, dif = 3, mu = 3, sd = 2),
linewidth = 1) +
theme_classic() +
scale_color_manual(name = NULL, values = c("#de0277", "purple")) +
theme(legend.position.inside = c(0.8, 0.9),
text = element_text(size = 20))
By default, all functions in the densityratio
package standardize the
data to the numerator means and standard deviations. This is done to
ensure that the importance of each variable in the kernel estimates is
not dependent on the scale of the data. By setting
scale = "denominator"
one can scale the data to the means and standard
deviations of the denominator data, and by setting scale = FALSE
the
data remains on the original scale.
All of the functions in the densityratio
package accept categorical
variables types. However, note that internally, these variables are
one-hot encoded, which can lead to a high-dimensional feature-space.
summary(numerator_data$x1)
#> A B C
#> 351 339 310
summary(denominator_data$x1)
#> A B C
#> 252 232 516
fit_cat <- ulsif(
df_numerator = numerator_data$x1,
df_denominator = denominator_data$x1
)
#> Warning in check.sigma(nsigma, sigma_quantile, sigma, dist_nu): There are duplicate values in 'sigma', only the unique values are used.
aggregate(
predict(fit_cat) ~ numerator_data$x1,
FUN = unique
)
#> numerator_data$x1 predict(fit_cat)
#> 1 A 1.3005360
#> 2 B 1.3574809
#> 3 C 0.6379142
table(numerator_data$x1) / table(denominator_data$x1)
#>
#> A B C
#> 1.3928571 1.4612069 0.6007752
This transformation can give a reasonable estimate of the ratio of proportions in the different data sets (although there is some regularization applied such that the estimated odds are closer to one than seen in the real data).
After transforming all variables to numeric variables, it is possible to calculate the density ratio over the entire multivariate space of the data.
fit_all <- ulsif(
df_numerator = numerator_data,
df_denominator = denominator_data
)
summary(fit_all, test = TRUE, parallel = TRUE)
#>
#> Call:
#> ulsif(df_numerator = numerator_data, df_denominator = denominator_data)
#>
#> Kernel Information:
#> Kernel type: Gaussian with L2 norm distances
#> Number of kernels: 200
#>
#> Optimal sigma: 1.065369
#> Optimal lambda: 0.1623777
#> Optimal kernel weights (loocv): num [1:201] 0.5691 0.1511 0.0959 0.0118 0.0149 ...
#>
#> Pearson divergence between P(nu) and P(de): 0.4629
#> Pr(P(nu)=P(de)) < .001
#> Bonferroni-corrected for testing with r(x) = P(nu)/P(de) AND r*(x) = P(de)/P(nu).
Besides ulsif()
, the package contains several other functions to
estimate a density ratio.
naive()
estimates the numerator and denominator densities separately, and subsequently takes there ratio.kliep()
estimates the density ratio directly through the Kullback-Leibler importance estimation procedure.
fit_naive <- naive(
df_numerator = numerator_data$x5,
df_denominator = denominator_data$x5
)
fit_kliep <- kliep(
df_numerator = numerator_data$x5,
df_denominator = denominator_data$x5
)
pred_naive <- predict(fit_naive, newdata = newx5)
pred_kliep <- predict(fit_kliep, newdata = newx5)
ggplot(data = NULL, aes(x = newx5)) +
geom_point(aes(y = pred, col = "ulsif estimates")) +
geom_point(aes(y = pred_naive, col = "naive estimates")) +
geom_point(aes(y = pred_kliep, col = "kliep estimates")) +
stat_function(aes(x = NULL, col = "True density ratio"),
fun = dratio, args = list(p = 0.4, dif = 3, mu = 3, sd = 2),
linewidth = 1) +
theme_classic() +
scale_color_manual(name = NULL, values = c("pink", "#512970","#de0277", "purple")) +
theme(legend.position.inside = c(0.8, 0.9),
text = element_text(size = 20))
The figure directly shows that ulsif()
and kliep()
come rather close
to the true density ratio function in this example, and outperform the
naive()
solution.
This package is still in development, and I’ll be happy to take feedback and suggestions. Please submit these through GitHub Issues.
Books
- General information about the density ratio estimation framework: Sugiyama, Suzuki and Kanamori (2012). Density Ratio Estimation in Machine Learning
Papers
- Density ratio estimation for the evaluation of the utility of synthetic data: Volker, De Wolf and Van Kesteren (2023). Assessing the utility of synthetic data: A density ratio perspective
Volker, T.B. (2023). densityratio: Distribution comparison through density ratio estimation. https://doi.org/10.5281/zenodo.8307819