-
Notifications
You must be signed in to change notification settings - Fork 835
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* Moves common functions to new maximum_minimum.h * Creates cmsis-nn/maximum_minimum.cc Change-Id: Ifbb3fedf53043b2f8d4c48d73c2ca44c7f0f87ca Signed-off-by: Ryan O'Shea <[email protected]>
- Loading branch information
Showing
5 changed files
with
249 additions
and
50 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
159 changes: 159 additions & 0 deletions
159
tensorflow/lite/micro/kernels/cmsis_nn/maximum_minimum.cc
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,159 @@ | ||
/* Copyright 2024 The TensorFlow Authors. All Rights Reserved. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. | ||
==============================================================================*/ | ||
|
||
#include "tensorflow/lite/micro/kernels/maximum_minimum.h" | ||
|
||
#include "Include/arm_nnfunctions.h" | ||
#include "tensorflow/lite/c/builtin_op_data.h" | ||
#include "tensorflow/lite/c/common.h" | ||
#include "tensorflow/lite/kernels/internal/common.h" | ||
#include "tensorflow/lite/kernels/internal/quantization_util.h" | ||
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h" | ||
#include "tensorflow/lite/kernels/kernel_util.h" | ||
#include "tensorflow/lite/kernels/op_macros.h" | ||
#include "tensorflow/lite/micro/kernels/kernel_util.h" | ||
#include "tensorflow/lite/micro/micro_log.h" | ||
|
||
namespace tflite { | ||
|
||
namespace { | ||
|
||
cmsis_nn_dims FillVariableShape(int32_t rank, int32_t* tensor_dims) { | ||
if (rank == 4) { | ||
return {tensor_dims[0], tensor_dims[1], tensor_dims[2], tensor_dims[3]}; | ||
} else if (rank == 3) { | ||
return {1, tensor_dims[0], tensor_dims[1], tensor_dims[2]}; | ||
} else if (rank == 2) { | ||
return {1, 1, tensor_dims[0], tensor_dims[1]}; | ||
} else { | ||
return {1, 1, 1, 1}; | ||
} | ||
} | ||
|
||
TfLiteStatus EvalMaximum(TfLiteContext* context, TfLiteNode* node) { | ||
OpContext op_context(context, node); | ||
const TfLiteEvalTensor* input1 = | ||
tflite::micro::GetEvalInput(context, node, kInputTensor1); | ||
const TfLiteEvalTensor* input2 = | ||
tflite::micro::GetEvalInput(context, node, kInputTensor2); | ||
TfLiteEvalTensor* output = | ||
tflite::micro::GetEvalOutput(context, node, kOutputTensor); | ||
|
||
RuntimeShape input_1_shape = tflite::micro::GetTensorShape(input1); | ||
RuntimeShape input_2_shape = tflite::micro::GetTensorShape(input2); | ||
RuntimeShape output_shape = tflite::micro::GetTensorShape(output); | ||
|
||
cmsis_nn_dims input_1_dims = FillVariableShape( | ||
input_1_shape.DimensionsCount(), input_1_shape.DimsData()); | ||
cmsis_nn_dims input_2_dims = FillVariableShape( | ||
input_2_shape.DimensionsCount(), input_2_shape.DimsData()); | ||
cmsis_nn_dims output_dims = FillVariableShape(output_shape.DimensionsCount(), | ||
output_shape.DimsData()); | ||
|
||
switch (op_context.output->type) { | ||
case kTfLiteInt8: | ||
cmsis_nn_context ctx; | ||
ctx.buf = nullptr; | ||
ctx.size = 0; | ||
|
||
arm_maximum_s8( | ||
&ctx, tflite::micro::GetTensorData<int8_t>(input1), &input_1_dims, | ||
tflite::micro::GetTensorData<int8_t>(input2), &input_2_dims, | ||
tflite::micro::GetTensorData<int8_t>(output), &output_dims); | ||
break; | ||
case kTfLiteFloat32: | ||
TFLiteOperation<float, MaximumOp>(context, node, op_context); | ||
break; | ||
case kTfLiteInt16: | ||
TFLiteOperation<int16_t, MaximumOp>(context, node, op_context); | ||
break; | ||
case kTfLiteInt32: | ||
TFLiteOperation<int32_t, MaximumOp>(context, node, op_context); | ||
break; | ||
case kTfLiteInt64: | ||
TFLiteOperation<int64_t, MaximumOp>(context, node, op_context); | ||
break; | ||
default: | ||
MicroPrintf("Type %s (%d) is not supported by Maximum/Minimum.", | ||
TfLiteTypeGetName(op_context.output->type), | ||
op_context.output->type); | ||
return kTfLiteError; | ||
} | ||
return kTfLiteOk; | ||
} | ||
|
||
TfLiteStatus EvalMinimum(TfLiteContext* context, TfLiteNode* node) { | ||
OpContext op_context(context, node); | ||
const TfLiteEvalTensor* input1 = | ||
tflite::micro::GetEvalInput(context, node, kInputTensor1); | ||
const TfLiteEvalTensor* input2 = | ||
tflite::micro::GetEvalInput(context, node, kInputTensor2); | ||
TfLiteEvalTensor* output = | ||
tflite::micro::GetEvalOutput(context, node, kOutputTensor); | ||
|
||
RuntimeShape input_1_shape = tflite::micro::GetTensorShape(input1); | ||
RuntimeShape input_2_shape = tflite::micro::GetTensorShape(input2); | ||
RuntimeShape output_shape = tflite::micro::GetTensorShape(output); | ||
|
||
cmsis_nn_dims input_1_dims = FillVariableShape( | ||
input_1_shape.DimensionsCount(), input_1_shape.DimsData()); | ||
cmsis_nn_dims input_2_dims = FillVariableShape( | ||
input_2_shape.DimensionsCount(), input_2_shape.DimsData()); | ||
cmsis_nn_dims output_dims = FillVariableShape(output_shape.DimensionsCount(), | ||
output_shape.DimsData()); | ||
|
||
switch (op_context.output->type) { | ||
case kTfLiteInt8: | ||
cmsis_nn_context ctx; | ||
ctx.buf = nullptr; | ||
ctx.size = 0; | ||
|
||
arm_minimum_s8( | ||
&ctx, tflite::micro::GetTensorData<int8_t>(input1), &input_1_dims, | ||
tflite::micro::GetTensorData<int8_t>(input2), &input_2_dims, | ||
tflite::micro::GetTensorData<int8_t>(output), &output_dims); | ||
break; | ||
case kTfLiteFloat32: | ||
TFLiteOperation<float, MinimumOp>(context, node, op_context); | ||
break; | ||
case kTfLiteInt16: | ||
TFLiteOperation<int16_t, MinimumOp>(context, node, op_context); | ||
break; | ||
case kTfLiteInt32: | ||
TFLiteOperation<int32_t, MinimumOp>(context, node, op_context); | ||
break; | ||
case kTfLiteInt64: | ||
TFLiteOperation<int64_t, MinimumOp>(context, node, op_context); | ||
break; | ||
default: | ||
MicroPrintf("Type %s (%d) is not supported by Maximum/Minimum.", | ||
TfLiteTypeGetName(op_context.output->type), | ||
op_context.output->type); | ||
return kTfLiteError; | ||
} | ||
return kTfLiteOk; | ||
} | ||
|
||
} // namespace | ||
|
||
TFLMRegistration Register_MAXIMUM() { | ||
return tflite::micro::RegisterOp(nullptr, nullptr, EvalMaximum); | ||
} | ||
|
||
TFLMRegistration Register_MINIMUM() { | ||
return tflite::micro::RegisterOp(nullptr, nullptr, EvalMinimum); | ||
} | ||
|
||
} // namespace tflite |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,85 @@ | ||
/* Copyright 2024 The TensorFlow Authors. All Rights Reserved. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. | ||
==============================================================================*/ | ||
|
||
#ifndef TENSORFLOW_LITE_MICRO_KERNELS_MAXIMUM_MINIMUM_H_ | ||
#define TENSORFLOW_LITE_MICRO_KERNELS_MAXIMUM_MINIMUM_H_ | ||
|
||
#include "tensorflow/lite/c/builtin_op_data.h" | ||
#include "tensorflow/lite/c/common.h" | ||
#include "tensorflow/lite/kernels/internal/common.h" | ||
#include "tensorflow/lite/kernels/internal/quantization_util.h" | ||
#include "tensorflow/lite/kernels/internal/reference/maximum_minimum.h" | ||
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h" | ||
#include "tensorflow/lite/kernels/kernel_util.h" | ||
#include "tensorflow/lite/kernels/op_macros.h" | ||
#include "tensorflow/lite/micro/kernels/kernel_util.h" | ||
#include "tensorflow/lite/micro/micro_log.h" | ||
|
||
namespace tflite { | ||
|
||
// This file has a reference implementation of TFMaximum/TFMinimum. | ||
enum KernelType { | ||
kReference, | ||
}; | ||
|
||
constexpr int kInputTensor1 = 0; | ||
constexpr int kInputTensor2 = 1; | ||
constexpr int kOutputTensor = 0; | ||
|
||
struct OpContext { | ||
OpContext(TfLiteContext* context, TfLiteNode* node) { | ||
input1 = tflite::micro::GetEvalInput(context, node, kInputTensor1); | ||
input2 = tflite::micro::GetEvalInput(context, node, kInputTensor2); | ||
output = tflite::micro::GetEvalOutput(context, node, kOutputTensor); | ||
} | ||
const TfLiteEvalTensor* input1; | ||
const TfLiteEvalTensor* input2; | ||
TfLiteEvalTensor* output; | ||
}; | ||
|
||
struct MaximumOp { | ||
template <typename data_type> | ||
static data_type op(data_type el1, data_type el2) { | ||
return el1 > el2 ? el1 : el2; | ||
} | ||
}; | ||
|
||
struct MinimumOp { | ||
template <typename data_type> | ||
static data_type op(data_type el1, data_type el2) { | ||
return el1 < el2 ? el1 : el2; | ||
} | ||
}; | ||
|
||
template <typename data_type, typename op_type> | ||
void TFLiteOperation(TfLiteContext* context, TfLiteNode* node, | ||
const OpContext& op_context) { | ||
reference_ops::MaximumMinimumBroadcastSlow( | ||
tflite::micro::GetTensorShape(op_context.input1), | ||
tflite::micro::GetTensorData<data_type>(op_context.input1), | ||
tflite::micro::GetTensorShape(op_context.input2), | ||
tflite::micro::GetTensorData<data_type>(op_context.input2), | ||
tflite::micro::GetTensorShape(op_context.output), | ||
tflite::micro::GetTensorData<data_type>(op_context.output), | ||
op_type::template op<data_type>); | ||
} | ||
|
||
TFLMRegistration Register_MAXIMUM(); | ||
|
||
TFLMRegistration Register_MINIMUM(); | ||
|
||
} // namespace tflite | ||
|
||
#endif // TENSORFLOW_LITE_MICRO_KERNELS_MAXIMUM_MINIMUM_H_ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters