A powerful Dart client library for interacting with the Groq Cloud API, empowering you to easily harness the capabilities of state-of-the-art Large Language Models (LLMs) within your Dart and Flutter applications.
- Intuitive Chat Interface: Seamlessly create and manage chat sessions with Groq's LLMs.
- Streaming Support: Receive chat responses in real time with streaming functionality.
- Model Management: Retrieve metadata about available Groq models and dynamically switch between them.
- Customization: Configure chat settings to fine-tune responses (temperature, max tokens, etc.).
- Resource Usage Tracking: Get detailed insights into token usage and request/response times.
- Rate Limit Information: Stay informed about your Groq API usage limits.
- Future-proof: Easily support new Groq models as they become available.
- Audio Transcription: Transcribe audio files into text using Groq's powerful Whisper models.
- Audio Translation: Translate audio files directly into english.
- Content Moderation: Easily check if texts are harmful.
-
Obtain a Groq API Key:
- Visit the Groq Cloud console to create your API key: https://console.groq.com/keys
-
Install the Groq Dart SDK:
- Add
groq_sdk
to yourpubspec.yaml
file:dependencies: groq_sdk: ^0.1.0 # add the latest version here
- Run
dart pub get
.
- Add
This initiates a new chat session with the specified model, optionally customizing settings like temperature and max tokens.
final groq = Groq('YOUR_GROQ_API_KEY');
//Start a chat with default settings
if(!await groq.canUseModel(GroqModels.llama3_8b)) return;
final chat = groq.startNewChat(GroqModels.llama3_8b);
//Start a chat with custom settings
final customChat = groq.startNewChat(GroqModels.llama3_70b, settings: GroqChatSettings(
temperature: 0.8, //More creative responses
maxTokens: 512, //shorter responses
));
This allows you to process each message (both user requests and model responses) as they are sent and received in real-time.
final chat = groq.startNewChat(GroqModels.llama3_8b);
chat.stream.listen((event) {
event.when(request: (requestEvent) {
//Listen for user prompts
print('Request sent...');
print(requestEvent.message.content);
}, response: (responseEvent) {
//Listen for llm responses
print(
'Received response: ${responseEvent.response.choices.first.message}');
});
});
Sends a message to the model and awaits the response. The usage object provides details about token consumption and timing. It also sends a request and either a response or an error to the chat's stream
.
You can additionally retrieve the response and usage via the return values of sendMessage
final (response, usage) = await chat.sendMessage('Explain LLMs to me please');
print(response.choices.first.message);
This allows you to dynamically change the language model used in the chat session.
chat.switchModel(GroqModels.mixtral8_7b); //Also available during a running chat
Provides information about the remaining API calls and tokens you can use within your current rate limit period.
final rateLimitInfo = chat.rateLimitInfo;
print(rateLimitInfo.remainingRequestsToday);
This gives you the token usage details (prompt tokens, completion tokens, total tokens) for the most recent response. It also gives you response times and prompt times
final latestUsage = chat.latestResponse.usage;
print(latestUsage.totalTokens);
Calculates the cumulative token usage for all requests and responses within the current chat session.
final totalTokensUsed = chat.totalTokens;
print('Total tokens used in this chat: $totalTokensUsed');
Transcribe audio files using Groq's supported whisper-large-v3
model (or other available models). Replace './path/to/your/audio.mp3'
with the actual path to your audio file.
final groq = Groq('YOUR_GROQ_API_KEY');
try {
final (transcriptionResult, rateLimitInformation) = await groq.transcribeAudio(
filePath: './path/to/your/audio.mp3', // Adjust file path as needed
);
print(transcriptionResult.text); // The transcribed text
} on GroqException catch (e) {
print('Error transcribing audio: $e');
}
Easily check if a text is harmful using the isTextHarmful method. It analyzes the text and returns whether it's harmful, the harmful category, and usage details.
final (isHarmful, harmfulCategory, usage, rateLimit) = await groq.isTextHarmful(
text: 'YOUR_TEXT',
);
if (isHarmful) {
print('Harmful content detected: $harmfulCategory');
}
Instead of looking up the standard models, you can use the ids via provided constants in GroqModels
:
const String mixtral8_7b = 'mixtral-8x7b-32768';
const String gemma_7b = 'gemma-7b-it';
const String llama3_8b = 'llama3-8b-8192';
const String llama3_70b = 'llama3-70b-8192';
const String whisper_large_v3 = 'whisper-large-v3';
static const String llama31_70b_versatile = 'llama-3.1-70b-versatile';
static const String llama31_8b_instant = 'llama-3.1-8b-instant';
static const String llama3_groq_70b_tool_use_preview =
'llama3-groq-70b-8192-tool-use-preview';
static const String llama3_groq_8b_tool_use_preview =
'llama3-groq-8b-8192-tool-use-preview';
static const String llama_guard_3_8b = 'llama-guard-3-8b';
You can use these constants directly when starting a new chat or switching models:
final chat = groq.startNewChat(GroqModels.mixtral8_7b);
Parameter | Description | Default |
---|---|---|
maxConversationalMemoryLength | The number of previous messages to include in the context for the model's response. Higher values provide more context-aware responses. | 1024 |
temperature | Controls the randomness of responses (0.0 - deterministic, 2.0 - very random). | 1.0 |
maxTokens | Maximum number of tokens allowed in the generated response. | 8192 |
topP | Controls the nucleus sampling probability mass (0.0 - narrow focus, 1.0 - consider all options). | 1.0 |
stop | Optional stop sequence(s) to terminate response generation. | null |
- Replace
"YOUR_GROQ_API_KEY"
with your actual Groq API key, obtained from the Groq Cloud console: https://console.groq.com/keys - The Groq Cloud console is your central hub for managing API keys, exploring documentation, and accessing other Groq Cloud features: https://console.groq.com/
- Multiple choices in GroqResponses are not supported yet.