Skip to content

Framework for working with Foundation Model from AWS Bedrock Services. Build on top of boto3

License

Notifications You must be signed in to change notification settings

techXtumy/bedrock_llm

 
 

Repository files navigation

Bedrock LLM

A Python library for building LLM applications using Amazon Bedrock Provider and boto3 library. It aims to create best practices and production-ready solutions for various LLM models, including Anthropic, Llama, Amazon Titan, MistralAI, and AI21.

The library is structured into two main components:

  1. bedrock_be: Infrastructure and services for deploying LLM applications.
  2. bedrock_llm: LLM orchestration and interaction logic.

This structure allows for seamless integration of LLM capabilities with robust deployment and infrastructure management.

Conceptual Architecture

Features

  • Support for multiple LLM models through Amazon Bedrock
  • Efficient LLM orchestration with bedrock_llm
  • Infrastructure and deployment services with bedrock_be
  • Enhanced Agent-based interactions with:
    • Robust tool validation and execution
    • Comprehensive error handling and logging
    • Configurable memory management
    • Type-safe responses with AgentResponse
    • Support for multiple LLM tool-calling conventions (Claude, Llama, Mistral, etc.)
  • Asynchronous and synchronous function support
  • Performance monitoring and logging functionality
  • Support for Retrieval-Augmented Generation (RAG)
  • Optimized Pipeline System:
    • Modular node-based architecture
    • Batch processing with configurable parameters
    • In-memory caching with size management
    • Parallel processing with thread pools
    • Type-safe node connections
    • Event-driven data flow
    • Filter nodes for data validation
  • Multi-Agent systems (in progress)
  • Image generation, speech-to-text (STT), and text-to-speech (TTS) support (coming soon)

Installation

You can install the Bedrock LLM library using pip:

pip install bedrock-llm

This library requires Python 3.9 or later.

AWS Credentials Setup

Before using the library, make sure you have your AWS credentials properly configured:

  1. Create or update your AWS credentials file at ~/.aws/credentials:

    [bedrock]
    aws_access_key_id = YOUR_ACCESS_KEY
    aws_secret_access_key = YOUR_SECRET_KEY
  2. Create or update your AWS config file at ~/.aws/config:

    [profile bedrock]
    region = us-east-1
  3. When initializing the client, specify the profile name:

    from bedrock_llm import LLMClient, ModelName, ModelConfig
    
    # Create a LLM client with specific AWS profile
    client = LLMClient(
        region_name="us-east-1",
        model_name=ModelName.MISTRAL_7B,
        profile_name="bedrock"  # Specify your AWS profile name
    )

    You can verify your credentials by running:

    aws bedrock list-foundation-models --profile bedrock

Quick Start

Simple text generation

from bedrock_llm import LLMClient, ModelName, ModelConfig

# Create a LLM client
client = LLMClient(
    region_name="us-east-1",
    model_name=ModelName.MISTRAL_7B
)

# Create a configuration for inference parameters
config = ModelConfig(
    temperature=0.1,
    top_p=0.9,
    max_tokens=512
)

# Create a prompt
prompt = "Who are you?"

# Invoke the model and get results
response, stop_reason = client.generate(config, prompt)

# Print out the results
cprint(response.content, "green")
cprint(stop_reason, "red")

Simple tool calling

from bedrock_llm import Agent, ModelName
from bedrock_llm.schema.tools import ToolMetadata, InputSchema, PropertyAttr

agent = Agent(
    region_name="us-east-1",
    model_name=ModelName.CLAUDE_3_5_HAIKU
)

# Define the tool description for the model
get_weather_tool = ToolMetadata(
    name="get_weather",
    description="Get the weather in specific location",
    input_schema=InputSchema(
        type="object",
        properties={
            "location": PropertyAttr(
                type="string",
                description="Location to search for, example: New York, WashingtonDC, ..."
            )
        },
        required=["location"]
    )
)

# Define the tool
@Agent.tool(get_weather_tool)
async def get_weather(location: str):
    return f"{location} is 20*C"


async def main():
    prompt = input("User: ")

    async for token, stop_reason, response, tool_result in agent.generate_and_action_async(
        prompt=prompt,
        tools=["get_weather"]
    ):
        if token:
            print(token, end="", flush=True)
        if stop_reason:
            print(f"\n{stop_reason}")


if __name__ == "__main__":
    import asyncio
    asyncio.run(main())

Pipeline Usage

from bedrock_llm.pipeline import Pipeline, BatchNode, CachedNode

# Create a pipeline for efficient text processing
pipeline = Pipeline("text-processor")

# Add optimized nodes
batch_node = BatchNode(
    "batch-embeddings",
    embed_batch_func,
    batch_size=32
)

cache_node = CachedNode(
    "cached-process",
    process_func,
    cache_size=1000
)

# Connect nodes
pipeline.add_node(batch_node)
pipeline.add_node(cache_node)
batch_node.connect(cache_node)

# Process data
result = await pipeline.execute(input_data)

Agent Features

The Agent class in bedrock_llm provides powerful capabilities for building LLM-powered applications:

Tool Management

from bedrock_llm import Agent, ToolMetadata
from typing import Dict

# Define a tool with metadata
@Agent.tool(
    metadata=ToolMetadata(
        name="search",
        description="Search for information",
        input_schema={
            "type": "object",
            "properties": {
                "query": {"type": "string", "description": "Search query"}
            },
            "required": ["query"]
        }
    )
)
async def search(query: str) -> Dict:
    # Tool implementation
    pass

Error Handling

The library provides comprehensive error handling with custom exceptions:

try:
    result = await agent.generate_and_action_async(
        prompt="Search for Python tutorials",
        tools=["search"]
    )
except ToolExecutionError as e:
    print(f"Tool '{e.tool_name}' failed: {e.message}")
    if e.original_error:
        print(f"Original error: {e.original_error}")

Memory Management

Configure memory limits to manage conversation history:

agent = Agent(
    region_name="us-west-2",
    model_name=ModelName.ANTHROPIC_CLAUDE_V2,
    memory_limit=100  # Keep last 100 messages
)

Type-Safe Responses

The library now provides type-safe responses using TypedDict:

async for response in agent.generate_and_action_async(...):
    token: Optional[str] = response["token"]
    stop_reason: Optional[StopReason] = response["stop_reason"]
    message: Optional[MessageBlock] = response["message"]
    tool_results: Optional[List] = response["tool_results"]

Tool States

Support for different LLM tool-calling conventions:

  • Claude/Llama style: Uses ToolUseBlock for tool execution
  • Mistral/Jamba style: Uses ToolCallBlock for function calling

Monitoring and Logging

Use the monitor decorators for performance monitoring:

from bedrock_llm.monitor import Monitor

@Monitor.monitor_async
async def my_async_function():
    # Your async function code here

@Monitor.monitor_sync
def my_sync_function():
    # Your sync function code here

Use the log decorators for logging function calls:

from bedrock_llm.monitor import Logging

@Logging.log_async
async def my_async_function():
    # Your async function code here

@Logging.log_sync
def my_sync_function():
    # Your sync function code here

These decorators are optimized for minimal performance impact on your application.

Architecture

The Bedrock LLM library is architected for scalability, reliability, and extensibility. Key architectural components include:

Core Components

  • Client Layer: Robust interfaces for Bedrock service interaction

    • Async/Sync clients with streaming support
    • Configurable retry logic
    • Memory management
    • Type-safe operations
  • Model Layer: Flexible model implementation framework

    • Support for multiple LLM providers
    • Custom parameter optimization
    • Response formatting
  • Agent System: Advanced autonomous capabilities

    • Tool management and execution
    • State preservation
    • Error handling
    • Type-safe responses

Infrastructure (bedrock_be)

  • AWS service integration
  • Deployment automation
  • Monitoring and scaling
  • Security management

For a comprehensive architectural overview, see ARCHITECTURE.md.

Examples

For more detailed usage instructions and API documentation, please refer to our documentation.

You can also see some examples of how to use and build LLM flow using the libary

and more to come, we are working on it :)

More Documents and wanna understand the project more?

For more detailed documentation, examples, and project insights, please refer to the following resources:

Feel free to reach out if you have any questions or need further assistance!

Requirements

  • python>=3.9
  • pydantic>=2.0.0
  • boto3>=1.18.0
  • botocore>=1.21.0
  • jinja2>=3.1.2
  • psutil>=5.9.0
  • pytz>=2023.3
  • termcolor>=2.3.0
  • databases[postgresql]>=0.7.0
  • sqlalchemy>=2.0.0
  • asyncpg>=0.27.0 # PostgreSQL async driver
  • types-redis>=4.6.0
  • types-pytz
  • rx==3.2.0

Contributing

We welcome contributions! Please see our contributing guidelines for more details.

License

This project is licensed under the MIT License - see the LICENSE file for details.

About

Framework for working with Foundation Model from AWS Bedrock Services. Build on top of boto3

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 97.3%
  • Jinja 2.7%