- ZLUDA CUDA-like programming model for AMD GPUs, written in Rust.
- Hemi (No longer maintened) library for writting reusable CPU and GPU code. Single kernel function executable on both device types. More in this blog post.
- CUDA device management functions refference guide.
- Compile pytorch CUDA extension with multiple Compute Capabilities as well as PTX. https://pytorch.org/docs/stable/cpp_extension.html
env TORCH_CUDA_ARCH_LIST="6.1 7.5 8.6+PTX" python setup.py install
cudaDeviceGetAttribute
argued being faster , though it's too verbose
int maxBlockDimX;
int maxBlockDimY;
int maxBlockDimZ;
cudaDeviceGetAttribute(&maxBlockDimX, cudaDevAttrMaxBlockDimX, devIdx);
cudaDeviceGetAttribute(&maxBlockDimY, cudaDevAttrMaxBlockDimY, devIdx);
cudaDeviceGetAttribute(&maxBlockDimZ, cudaDevAttrMaxBlockDimZ, devIdx);
printf(" %d %d %d \n", maxBlockDimX, maxBlockDimY, maxBlockDimZ);
vs. cudaGetDeviceProperties
cudaDeviceProp prop;
cudaGetDeviceProperties(&prop, devIdx);
printf(" Max Threads Dim: %d %d %d\n", prop.maxThreadsDim[0], prop.maxThreadsDim[1], prop.maxThreadsDim[2]);
- Compile CUDA kernels
nvcc device_info.cu -o device_info
- Theory Thread Hierarchy with easy examples.
1d(Dx=15)
like finiding a point on a line
threadIdx = (7)
threadId = threadIdx.x
threadId = 7
-> -------x-------
2d(Dx=15, Dy=4)
like finding a line on a plane and then finding a point on it.
threadIdx = (2, 7)
threadId = threadIdx.x + threadIdx.y * Dx
threadId = 7 + 2 * 15 = 37
---------------
---------------
-> -------x-------
---------------
3d(Dx=15, Dy=4, Dz=2)
threadIdx = (0, 2, 7)
threadId = threadIdx.x + threadIdx.y * Dx + threadIdx.z * Dx * Dy
like finding a plane in a volume then line on a plane and finaly a point.
--------------- --
--------------- | first
-> --------x------ | find a slice
--------------- --
---------------
---------------
---------------
---------------