Skip to content

tansey-lab/pyro_tutorial

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

23 Commits
 
 
 
 

Repository files navigation

0 to Pyro in 60 Seconds

This guide shows, in a series of vignettes that are monotonically increasing in complexity, how to use the pyro probabilistic programming language.

Step 1

Introducing our first random variable, using the pyro.sample primitive

step_1.py

Step 2

Introducing the concept of observed values, via the obs= argument to pyro.sample

step_2.py

Step 3

Introducing pyro.plate, a primitive for marking conditionally independent variables

step_3.py

Step 4

Introducing poutine.trace, our first "effect handler"

step_4.py

Step 5

Introducing the internal structure of poutine.trace, and how that structure can be used to calculate the log probability sum and also create a graphical model plate diagram

step_5.py

Step 6

Combining observed values with calculating the log probability sum of our distribution

step_6.py

Step 7

Demonstrating two separate random variables in one model, and how we can sample the individual values of each using poutine.trace

step_7.py

Step 8

Using poutine.condition to condition on the value of one random variable before we sample from our posterior, and how this affects the log probability sum

step_8.py

Step 9

Demonstrating how to look at the gradient at a given random variable in our model

step_9.py

Step 10

Using this gradient to write a simple gradient descent algorithm to the find the MAP estimate of a random variable in our model

step_10.py

Step 11

Showing how the gradient descent algorithm laid out in step 10 fails if we have much more complicated, deeply nested hierarchical priors

step_11.py

Step 12

Since we cannot optimize our loss function, the next best thing to try is an MCMC algorithm to sample from our posterior

step_12.py

Step 13

The MCMC sampler works great but it is maybe too slow, so the next best thing to try is SVI.

For the sake of simplicity we return to the simple model from step 10 and show how to run SVI on it using a manually constructed guide

step_13.py

Step 14

Demonstrating how to use the AutoNormal class to automatically construct a guide function for us, and we see the results are the same as our manually constructed guide.

step_14.py

Step 15

Demonstrating nested plates, and the peculiarity of indexing into nested plates in pyro. We show two equivalent ways to nest plates in pyro.

step_15.py

⚠️ Required Reading ⚠️

It will be very difficult to understand the next vignette unless you understand the concept of "batch" and "event" dimensions.

This concept is explained very well by this blog post:

https://ericmjl.github.io/blog/2019/5/29/reasoning-about-shapes-and-probability-distributions/

(you only need to read up to the "Other Scenarios" section)

Step 16

Demonstrating the difference between batch and event dimensions with an example model that has to deal with both.

step_16.py

Step 17

Introducing a model with a discrete latent variable, and how we can use TraceEnum_ELBO to marginalize over it, and infer_discrete to create a classifier from our trained model.

step_17.py

Step 18

Demonstrating that some local optima are better than others, and how our model from step_17 is sensitive to its initialization values

step_18.py

Step 19

Demonstrating how to plot the ELBO loss curve for a model.

Inspecting this curve can give you insight into if you need to run for more SVI steps and if your model is converging.

step_19.py

Other Resources

Lecture from David Blei on Variational Inference

https://youtu.be/DaqNNLidswA

MiniPyro

A contributor has made a completely stripped down implementation of the pyro framework that is only a few hundred lines of code and pretty closely emulates what the full version of pyro does

Reading through this implementation can give you deep insight into how pyro itself works and I highly recommend it for advanced users:

https://github.com/pyro-ppl/pyro/blob/727aff741e105715840bfdafee5bfeda7e8b65e8/pyro/contrib/minipyro.py#L15

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages