Skip to content

talmago/spacy_crfsuite

Repository files navigation

spacy_crfsuite: CRF tagger for spaCy.

Sequence tagging with spaCy and crfsuite.

A port of Rasa NLU.

✨ Features

  • Simple but tough to beat CRF entity tagger ( via sklearn-crfsuite)
  • spaCy NER component
  • Command line interface for training & evaluation and example notebook
  • CoNLL, JSON and Markdown annotations
  • Pre-trained NER component

⏳ Installation

pip install spacy_crfsuite

🚀 Quickstart

Usage as a spaCy pipeline component

import spacy

from spacy.language import Language
from spacy_crfsuite import CRFEntityExtractor, CRFExtractor


@Language.factory("ner_crf")
def create_component(nlp, name):
    crf_extractor = CRFExtractor().from_disk("spacy_crfsuite_conll03_sm.bz2")
    return CRFEntityExtractor(nlp, crf_extractor=crf_extractor)


nlp = spacy.load("en_core_web_sm", disable=["ner"])
nlp.add_pipe("ner_crf")

doc = nlp(
    "George Walker Bush (born July 6, 1946) is an American politician and businessman "
    "who served as the 43rd president of the United States from 2001 to 2009.")

for ent in doc.ents:
    print(ent, "-", ent.label_)

# Output:
# George Walker Bush - PER
# American - MISC
# United States - LOC

Visualization (via Gradio)

Run the command below to launch a Gradio playground

$ pip install gradio
$ python spacy_crfsuite/visualize.py

Pre-trained models

You can download a pre-trained model.

Dataset F1 📥 Download
CoNLL03 82% spacy_crfsuite_conll03_sm.bz2

Train your own model

Below is a command line to train a simple model for restaurants search bot with markdown annotations and save it to disk. If you prefer working on jupyter, follow this notebook.

$ python -m spacy_crfsuite.train examples/restaurent_search.md -c examples/default-config.json -o model/ -lm en_core_web_sm
ℹ Loading config from disk
✔ Successfully loaded config from file.
examples/default-config.json
ℹ Loading training examples.
✔ Successfully loaded 15 training examples from file.
examples/restaurent_search.md
ℹ Using spaCy model: en_core_web_sm
ℹ Training entity tagger with CRF.
ℹ Saving model to disk
✔ Successfully saved model to file.
model/model.pkl

Below is a command line to test the CRF model and print the classification report (In the example we use the training set, however normally we would use a held out set).

$ python -m spacy_crfsuite.eval examples/restaurent_search.md -m model/model.pkl -lm en_core_web_sm
ℹ Loading model from file
model/model.pkl
✔ Successfully loaded CRF tagger
<spacy_crfsuite.crf_extractor.CRFExtractor object at 0x126e5f438>
ℹ Loading dev dataset from file
examples/example.md
✔ Successfully loaded 15 dev examples.
ℹ Using spaCy model: en_core_web_sm
ℹ Classification Report:
              precision    recall  f1-score   support

   B-cuisine      1.000     1.000     1.000         2
   I-cuisine      1.000     1.000     1.000         1
   L-cuisine      1.000     1.000     1.000         2
   U-cuisine      1.000     1.000     1.000         5
  U-location      1.000     1.000     1.000         7

   micro avg      1.000     1.000     1.000        17
   macro avg      1.000     1.000     1.000        17
weighted avg      1.000     1.000     1.000        17

Now we can use the tagger for named entity recognition in a spaCy pipeline!

import spacy

from spacy.language import Language
from spacy_crfsuite import CRFEntityExtractor, CRFExtractor


@Language.factory("ner_crf")
def create_component(nlp, name):
    crf_extractor = CRFExtractor().from_disk("model/model.pkl")
    return CRFEntityExtractor(nlp, crf_extractor=crf_extractor)


nlp = spacy.load("en_core_web_sm", disable=["ner"])
nlp.add_pipe("ner_crf")

doc = nlp("show mexican restaurents up north")
for ent in doc.ents:
    print(ent.text, "--", ent.label_)

# Output:
# mexican -- cuisine
# north -- location

Or alternatively as a standalone component

from spacy_crfsuite import CRFExtractor
from spacy_crfsuite.tokenizer import SpacyTokenizer

crf_extractor = CRFExtractor().from_disk("model/model.pkl")
tokenizer = SpacyTokenizer()

example = {"text": "show mexican restaurents up north"}
tokenizer.tokenize(example, attribute="text")
crf_extractor.process(example)

# Output:
# [{'start': 5,
#   'end': 12,
#   'value': 'mexican',
#   'entity': 'cuisine',
#   'confidence': 0.5823148506311286},
#  {'start': 28,
#   'end': 33,
#   'value': 'north',
#   'entity': 'location',
#   'confidence': 0.8863076478494413}]

We can also take a look at what model learned.

Use the .explain() method to understand model decision.

print(crf_extractor.explain())

# Output:
#
# Most likely transitions:
# O          -> O          1.637338
# B-cuisine  -> I-cuisine  1.373766
# U-cuisine  -> O          1.306077
# I-cuisine  -> L-cuisine  0.915989
# O          -> U-location 0.751463
# B-cuisine  -> L-cuisine  0.698893
# O          -> U-cuisine  0.480360
# U-location -> U-cuisine  0.403487
# O          -> B-cuisine  0.261450
# L-cuisine  -> O          0.182695
# 
# Positive features:
# 1.976502 O          0:bias:bias
# 1.957180 U-location -1:low:the
# 1.216547 B-cuisine  -1:low:for
# 1.153924 U-location 0:prefix5:centr
# 1.153924 U-location 0:prefix2:ce
# 1.110536 U-location 0:digit
# 1.058294 U-cuisine  0:prefix5:chine
# 1.058294 U-cuisine  0:prefix2:ch
# 1.051457 U-cuisine  0:suffix2:an
# 0.999976 U-cuisine  -1:low:me

Notice: You can also access the crf_extractor directly with nlp.get_pipe("crf_ner").crf_extractor.

Deploy to a web server

Start a web service

$ pip install uvicorn
$ uvicorn spacy_crfsuite.serve:app --host 127.0.0.1 --port 5000

Notice: Set $SPACY_MODEL and $CRF_MODEL in your environment to control the server configurations

cURL example

$ curl -X POST http://127.0.0.1:5000/parse -H 'Content-Type: application/json' -d '{"text": "George Walker Bush (born July 6, 1946) is an American politician and businessman who served as the 43rd president of the United States from 2001 to 2009."}'
{
  "data": [
    {
      "text": "George Walker Bush (born July 6, 1946) is an American politician and businessman who served as the 43rd president of the United States from 2001 to 2009.",
      "entities": [
        {
          "start": 0,
          "end": 18,
          "value": "George Walker Bush",
          "entity": "PER"
        },
        {
          "start": 45,
          "end": 53,
          "value": "American",
          "entity": "MISC"
        },
        {
          "start": 121,
          "end": 134,
          "value": "United States",
          "entity": "LOC"
        }
      ]
    }
  ]
}

Development

Set up env

$ poetry install
$ poetry run spacy download en_core_web_sm

Run unit test

$ poetry run pytest

Run black (code formatting)

$ poetry run black spacy_crfsuite/ --config=pyproject.toml