This bot provides limited Telegram interfaces to following proof assistant programs (in order of implementation):
- Coq
- Agda
- Idris 2
- Lean
- Arend
- Rzk
- Bot could be built via following commands:
cabal update
cabal build
cabal install --overwrite-policy=always
- To launch bot you need to set environmental variables, see
./config/settings.dhall
for more details.
One of them is PROOF_ASSISTANT_BOT_TOKEN
. Obtain it via @BotFather
and set it:
export PROOF_ASSISTANT_BOT_TOKEN="..."
- Another environmental variable that unfortunately needed is
NIX_PROFILE
. Please add it as
export NIX_PROFILE="$HOME/.nix-profile"
- Install
opam >= 2.1.0
, e.g. from here.
cd $HOME
opam --version
2.1.3
- Install
Coq
.
cd $HOME
opam init
eval $(opam env)
opam pin add coq 8.16.1
- Locate
coqtop
and set enviromental variable. Should be similar to:
export COQ_BIN_PATH="$HOME/.opam/default/bin/coqtop"
We do not need to worry about Agda
since it is included in package dependencies. It will be installed automatically. Meantime, Agda standard library should be installed manually.
-
Get
agda-stdlib
from Github. -
Unpack archive.
mkdir -p $PROOF_ASSISTANT_BOT_DIR/agda
cp agda-stdlib-1.7.1.tar.gz $PROOF_ASSISTANT_BOT_DIR/agda
cd $PROOF_ASSISTANT_BOT_DIR/agda
tar -xzvf agda-stdlib-1.7.1.tar.gz
export AGDA_STDLIB_PATH=$PROOF_ASSISTANT_BOT_DIR/agda/agda-stdlib-1.7.1
- Create file
$HOME/.agda/defaults
with following content:
standard-library
- Create file
$HOME/.agda/libraries
with following content:
$AGDA_STDLIB_PATH/standard-library.agda-lib
-
Get
nix
from nixos.org. -
Install
idris2
vianix
:
nix-env -i idris2
- Set environmental variable:
export IDRIS2_BIN_PATH="$HOME/.nix-profile/bin/idris2"
-
Get
nix
from nixos.org. -
Install
lean
vianix
:
nix-env -i lean4
- Create project directory:
lake new leanproject
It will create directory leanproject
with all necessary files.
- Set
LEAN_BIN_PATH
environmental variable:
export LEAN_BIN_PATH="$HOME/.nix-profile/bin/lean"
-
Set
LEAN_PROJECT_PATH
to the newly created project directory. -
Set
LAKE_BIN_PATH
environmental variable:
export LAKE_BIN_PATH="$HOME/.nix-profile/bin/lake"
-
Get
nix
from nixos.org. -
Get
java
andopenjdk17
vianix
:
nix-env -iA nixpkgs.jdk17
-
Set
JAVA_HOME
environment variable to your openjdk location. You can usereadlink $HOME/.nix-profile/bin/java
and strip/bin/java
from the end. -
Create project directory to store arend projects (for different Telegram chats) and set
AREND_ROOT_PROJECT_DIR
. -
Get Arend standard library from the official site and store in
${AREND_ROOT_PROJECT_DIR}/libs
. -
Point
AREND_STDLIB_PATH
environment variable to the same location asAREND_ROOT_PROJECT_DIR
. -
Download
Arend.jar
and setAREND_PATH
environment variable to its location, e.g.
export AREND_PATH="${AREND_ROOT_PROJECT_DIR}/Arend.jar"
No actions required. See cabal.project
for more details.
You can read about CLI Wrapper here: AlloyTools/org.alloytools.alloy#211
-
Get
nix
from nixos.org. -
Get
java
andopenjdk17
vianix
:
nix-env -iA nixpkgs.jdk17
-
Set
JAVA_HOME
environment variable to your openjdk location. You can usereadlink $HOME/.nix-profile/bin/java
and strip/bin/java
from the end. -
Get
alloy6
vianix
:
nix-env -i alloy6
-
Create project directory to store Alloy projects (for different telegram chats) and set
ALLOY_PROJECT_DIR
. -
Create directory for Alloy CLI wrapper and prepare Alloy CLI Wrapper:
mkdir -p $ALLOY_PROJECT_DIR/bin
cd $ALLOY_PROJECT_DIR
# Download Alloy CLI Wrapper
curl https://gist.githubusercontent.com/swamp-agr/560f0d9bf8dc034f99d6055a5a197285/raw/5b547616063ba834bfa2987bc1eb539f1ec8088d/Main.java > bin/Main.java
javac -cp "$NIX_PROFILE/share/alloy/*" -Xlint:all bin/Main.java
# Test: should be empty output and exit code 0
java -cp $NIX_PROFILE/share/alloy/alloy6.jar:$ALLOY_PROJECT_DIR/bin Main
- Set up
graphviz
andimagemagick
for generating plots based on Alloy CLI Wrapper output:
nix-env -iA nixpkgs.graphviz nixpkgs.imagemagick
- Set
ALLOY_PATH
environment variable to$NIX_PROFILE/share/alloy/alloy6.jar
.
- Coq supports only typecheck of the user input via
/coq
command. Example:
/coq Inductive day : Type :=
| monday
| tuesday
| wednesday
| thursday
| friday
| saturday
| sunday.
Definition next_weekday (d:day) : day :=
match d with
| monday => tuesday
| tuesday => wednesday
| wednesday => thursday
| thursday => friday
| friday => monday
| saturday => monday
| sunday => monday
end.
Compute (next_weekday friday).
Compute (next_weekday (next_weekday saturday)).
Example test_next_weekday:
(next_weekday (next_weekday saturday)) = tuesday.
Proof. simpl. reflexivity. Qed.
-
Agda is available via
/agda
command. Bot supports several subcommands for Agda:/agda /load <input>
. E.g.
/agda /load import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl) open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; _∎) data ℕ : Set where zero : ℕ suc : ℕ → ℕ {-# BUILTIN NATURAL ℕ #-} _+_ : ℕ → ℕ → ℕ zero + n = n (suc m) + n = suc (m + n) _ : 2 + 3 ≡ 5 _ = begin 2 + 3 ≡⟨⟩ -- is shorthand for (suc (suc zero)) + (suc (suc (suc zero))) ≡⟨⟩ -- inductive case suc ((suc zero) + (suc (suc (suc zero)))) ≡⟨⟩ -- inductive case suc (suc (zero + (suc (suc (suc zero))))) ≡⟨⟩ -- base case suc (suc (suc (suc (suc zero)))) ≡⟨⟩ -- is longhand for 5 ∎
/agda /reload
/agda /typeOf <expr>
. E.g./agda /typeOf suc
./agda <expr>
. E.g./agda suc zero + suc zero
.
-
Idris 2 via
/idris2
command. Bot supports several subcommands for Idris 2:/idris2 /load <input>
. E.g.
/idris2 /load module Main import System.File.ReadWrite tryPrint : Either FileError String -> IO () tryPrint (Left _) = putStrLn "error" tryPrint (Right r) = putStrLn r main : IO () main = do c <- readFile "hello.idr" tryPrint c
/idris2 /typeOf <expr>
. E.g./idris2 /typeOf Nat
./idris2 <expr>
. E.g./idris2 2 + 3
.
-
Lean is available via
/lean
command. Typecheck supported for the user input. Only several modes were tested (calc mode, conv mode, simplifier).- Example 1:
/lean import data.nat.basic variables (a b c d e : ℕ) variable h1 : a = b variable h2 : b = c + 1 variable h3 : c = d variable h4 : e = 1 + d theorem T : a = e := calc a = b : h1 ... = c + 1 : h2 ... = d + 1 : congr_arg _ h3 ... = 1 + d : add_comm d (1 : ℕ) ... = e : eq.symm h4
- Example 2:
/lean import topology.basic #check topological_space
- Example 3:
/lean import algebra.group.defs variables (G : Type) [group G] (a b c : G) example : a * a⁻¹ * 1 * b = b * c * c⁻¹ := begin simp end
-
Arend is available via
/arend
command. Only typecheck supported.- Example:
/arend \func f => 0
-
Rzk is available via
/rzk
command. Typechecker supported for every language.- Example:
/rzk #lang rzk-1 #def prod : (A : U) -> (B : U) -> U := \A -> \B -> ∑ (x : A), B #def isweq : (A : U) -> (B : U) -> (f : (_ : A) -> B) -> U := \A -> \B -> \f -> ∑ (g : (_ : B) -> A), prod ((x : A) -> g (f x) =_{A} x) ((y : B) -> f (g y) =_{B} y) #def weq : (A : U) -> (B : U) -> U := \A -> \B -> ∑ (f : (_ : A) -> B), isweq A B f #def Theorem-4.1 : (I : CUBE) -> (psi : (t : I) -> TOPE) -> (phi : {(t : I) | psi t} -> TOPE) -> (X : U) -> (Y : <{t : I | psi t} -> (x : X) -> U >) -> (f : <{t : I | phi t} -> (x : X) -> Y t x >) -> weq <{t : I | psi t} -> (x : X) -> Y t x [phi t |-> f t]> ((x : X) -> <{t : I | psi t} -> Y t x [phi t |-> f t x]>) := \I -> \psi -> \phi -> \X -> \Y -> \f -> (\k -> \x -> \t -> k t x, (\k -> \{t : I | psi t} -> \x -> (k x) t, (\k -> refl_{k}, \k -> refl_{k}))) #def Theorem-4.2_uncurry_ext : (I : CUBE) -> (J : CUBE) -> (psi : (t : I) -> TOPE) -> (zeta : (s : J) -> TOPE) -> (X : <{t : I | psi t} -> <{s : J | zeta s} -> U> >) -> (chi : {(t : I) | psi t} -> TOPE) -> (phi : {(s : J) | zeta s} -> TOPE) -> (f : <{(t, s) : I * J | psi t /\ zeta s} -> X t s >) -> (_ : <{t : I | psi t} -> <{s : J | zeta s} -> X t s [chi s |-> f (t, s)]> [phi t |-> \s -> f (t, s)]>) -> <{(t, s) : I * J | psi t /\ zeta s} -> X t s [(phi t /\ zeta s) \/ (psi t /\ chi s) |-> f (t, s)]> := \I -> \J -> \psi -> \zeta -> \X -> \chi -> \phi -> \f -> \k -> \(t, s) -> k t s
-
Alloy is available via
/alloy
command.- Example:
/alloy open util/ordering[Id] sig Node { id : one Id, succ : one Node, var inbox : set Id, var outbox : set Id } sig Id {} fact ring { all i : Id | lone id.i all n : Node | Node in n.^succ } var sig elected in Node {} fact elected { always { elected = {n : Node | once (n.id in n.inbox)} } } enum Event { Send, Compute } pred send [n : Node] { some i : n.outbox { n.outbox' = n.outbox - i n.succ.inbox' = n.succ.inbox + i } all m : Node - n.succ | m.inbox' = m.inbox all m : Node - n | m.outbox' = m.outbox } fun send : Event -> Node { Send -> { n : Node | send[n] } } pred compute [n : Node] { some i : n.inbox { n.inbox' = n.inbox - i n.outbox' = n.outbox + (i - n.id.*(~next)) } all m : Node - n | m.inbox' = m.inbox all m : Node - n | m.outbox' = m.outbox } fun compute : Event -> Node { Compute -> { n : Node | compute[n] } } fun events : set Event { (send+compute).Node } pred skip { inbox' = inbox outbox' = outbox } fact init { no inbox outbox = id } fact behaviour { always (skip or some n : Node | send[n] or compute[n]) } run {} for 4 but exactly 4 Node, 10 steps run example {eventually some elected} for 3 but exactly 3 Node, 6 steps assert safety { always lone elected } check safety for 3 but 15 steps pred sendEnabled [n : Node] { some n.outbox } pred computeEnabled [n : Node] { some n.inbox } pred fairness { always (all n : Node | (always sendEnabled[n] implies eventually send[n])) always (all n : Node | (always computeEnabled[n] implies eventually compute[n])) } assert liveness { fairness and some Node implies eventually some elected } check liveness for 3
- As result you can see:
- @ProofBot (online)
- @ProofDebugBot (for debug purpose, offline most of the time)
- PLTT Community
- Nikolay Kudasov
- Andrey Borzenkov
- Matúš Tejiščák
- My wife