Skip to content

source code of NAACL2021 "PCFGs Can Do Better: Inducing Probabilistic Context-Free Grammars with Many Symbols“ and ACL2021 main conference "Neural Bilexicalized PCFG Induction"

Notifications You must be signed in to change notification settings

sustcsonglin/TN-PCFG

Repository files navigation

TN-PCFG and NBL-PCFG

source code of

The repository also contain faster implementations of:

News

Setup

setup environment

conda create -n pcfg python=3.9
conda activate pcfg
while read requirement; do pip install $requirement; done < requirement.txt 

prepare dataset

You can download the dataset and pretrained model (TN-PCFG and NBL-PCFG) from: https://mega.nz/folder/OU5yiTjC#oeMYj1gBhqm2lRAdAvbOvw

PTB: ptb_cleaned.zip / CTB and SPRML: ctb_sprml_clean.zip

You can directly use the propocessed pickle file or create pickle file by your own

python  preprocessing.py  --train_file path/to/your/file --val_file path/to/your/file --test_file path/to/your/file  --cache path/

After this, your data folder should look like this:

config/
   ├── tnpcfg_r500_nt250_t500_curriculum0.yaml
   ├── ...
  
data/
   ├── ptb-train-lpcfg.pickle    
   ├── ptb-val-lpcfg.pickle
   ├── ptb-test-lpcfg.pickle
   ├── ...
   
log/
fastNLP/
parser/
train.py
evaluate.py
preprocessing.py

Train

TN-PCFG

python train.py --conf tnpcfg_r500_nt250_t500_curriculum0.yaml

Compound PCFG

python train.py --conf cpcfg_nt30_t60_curriculum1.yaml

....

Evaluation

For example, the saved directory should look like this:

log/
   ├── NBLPCFG2021-01-26-07_47_29/
   	  ├── config.yaml
   	  ├── best.pt
   	  ├── ...

python evaluate.py --load_from_dir log/NBLPCFG2021-01-26-07_47_29 --decode_type mbr --eval_dep 1

Contact

If you have any question, plz contact [email protected].

Citation

If you find this repository helpful, please cite our work.

@inproceedings{liu-etal-2023-simple,
    title = "Simple Hardware-Efficient {PCFG}s with Independent Left and Right Productions",
    author = "Liu, Wei  and
      Yang, Songlin  and
      Kim, Yoon  and
      Tu, Kewei",
    editor = "Bouamor, Houda  and
      Pino, Juan  and
      Bali, Kalika",
    booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2023",
    month = dec,
    year = "2023",
    address = "Singapore",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2023.findings-emnlp.113",
    doi = "10.18653/v1/2023.findings-emnlp.113",
    pages = "1662--1669",
    abstract = "Scaling dense PCFGs to thousands of nonterminals via low-rank parameterizations of the rule probability tensor has been shown to be beneficial for unsupervised parsing. However, PCFGs scaled this way still perform poorly as a language model, and even underperform similarly-sized HMMs. This work introduces $\emph{SimplePCFG}$, a simple PCFG formalism with independent left and right productions. Despite imposing a stronger independence assumption than the low-rank approach, we find that this formalism scales more effectively both as a language model and as an unsupervised parser. We further introduce $\emph{FlashInside}$, a hardware IO-aware implementation of the inside algorithm for efficiently scaling simple PCFGs. Through extensive experiments on multiple grammar induction benchmarks, we validate the effectiveness of simple PCFGs over low-rank baselines.",
}

@inproceedings{yang-etal-2022-dynamic,
    title = "Dynamic Programming in Rank Space: Scaling Structured Inference with Low-Rank {HMM}s and {PCFG}s",
    author = "Yang, Songlin  and
      Liu, Wei  and
      Tu, Kewei",
    editor = "Carpuat, Marine  and
      de Marneffe, Marie-Catherine  and
      Meza Ruiz, Ivan Vladimir",
    booktitle = "Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
    month = jul,
    year = "2022",
    address = "Seattle, United States",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2022.naacl-main.353",
    doi = "10.18653/v1/2022.naacl-main.353",
    pages = "4797--4809",
    abstract = "Hidden Markov Models (HMMs) and Probabilistic Context-Free Grammars (PCFGs) are widely used structured models, both of which can be represented as factor graph grammars (FGGs), a powerful formalism capable of describing a wide range of models. Recent research found it beneficial to use large state spaces for HMMs and PCFGs. However, inference with large state spaces is computationally demanding, especially for PCFGs. To tackle this challenge, we leverage tensor rank decomposition (aka. CPD) to decrease inference computational complexities for a subset of FGGs subsuming HMMs and PCFGs. We apply CPD on the factors of an FGG and then construct a new FGG defined in the rank space. Inference with the new FGG produces the same result but has a lower time complexity when the rank size is smaller than the state size. We conduct experiments on HMM language modeling and unsupervised PCFG parsing, showing better performance than previous work. Our code is publicly available at \url{https://github.com/VPeterV/RankSpace-Models}.",
}

@inproceedings{yang-etal-2021-neural,
    title = "Neural Bi-Lexicalized {PCFG} Induction",
    author = "Yang, Songlin  and
      Zhao, Yanpeng  and
      Tu, Kewei",
    booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
    month = aug,
    year = "2021",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.acl-long.209",
    doi = "10.18653/v1/2021.acl-long.209",
    pages = "2688--2699",
    abstract = "Neural lexicalized PCFGs (L-PCFGs) have been shown effective in grammar induction. However, to reduce computational complexity, they make a strong independence assumption on the generation of the child word and thus bilexical dependencies are ignored. In this paper, we propose an approach to parameterize L-PCFGs without making implausible independence assumptions. Our approach directly models bilexical dependencies and meanwhile reduces both learning and representation complexities of L-PCFGs. Experimental results on the English WSJ dataset confirm the effectiveness of our approach in improving both running speed and unsupervised parsing performance.",
}

@inproceedings{yang-etal-2021-pcfgs,
    title = "{PCFG}s Can Do Better: Inducing Probabilistic Context-Free Grammars with Many Symbols",
    author = "Yang, Songlin  and
      Zhao, Yanpeng  and
      Tu, Kewei",
    booktitle = "Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
    month = jun,
    year = "2021",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/2021.naacl-main.117",
    pages = "1487--1498",
    abstract = "Probabilistic context-free grammars (PCFGs) with neural parameterization have been shown to be effective in unsupervised phrase-structure grammar induction. However, due to the cubic computational complexity of PCFG representation and parsing, previous approaches cannot scale up to a relatively large number of (nonterminal and preterminal) symbols. In this work, we present a new parameterization form of PCFGs based on tensor decomposition, which has at most quadratic computational complexity in the symbol number and therefore allows us to use a much larger number of symbols. We further use neural parameterization for the new form to improve unsupervised parsing performance. We evaluate our model across ten languages and empirically demonstrate the effectiveness of using more symbols.",
}

Ack.

We use fastNLP and the code template of Supar

About

source code of NAACL2021 "PCFGs Can Do Better: Inducing Probabilistic Context-Free Grammars with Many Symbols“ and ACL2021 main conference "Neural Bilexicalized PCFG Induction"

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages