Surveillance Vehicle Localization Dataset (SVLD-3D) - 3D vehicle detection and localization for monocular roadside cameras.
SVLD-3D # root directory
├── DATA2021 # trainval set
├── Annotations # annotation
├── {image_id}.xml
├── Calib # calibration parameters (world to image)
├── {scene_id}.xml
├── ImageSets # dataset split
├── Main
├── trainval.txt
├── train.txt
├── val.txt
├── test.txt
├── JPEGImages # image (jpg/png)
├── {image_id}.jpg/png
├── TESTDATA2021 # test set
├── Annotations # annotation
├── {image_id}.xml
├── Calib # calibration parameters (world to image)
├── {scene_id}.xml
├── JPEGImages # image (jpg/png)
├── {image_id}.jpg/png
├── split_train_val_test.py # split train/val/test set
├── README.md # instruction
<annotation>
<filename>absolute path: {image_id}.jpg/png</filename>
<calibfile>absolute path: {scene_id}.xml</calibfile>
<size>
<width>image_width</width>
<height>image_height</height>
<depth>image_depth</depth>
</size>
<object>
<type>vehicle type</type>
<bbox2d>2D bbox: left, top, right, bottom</bbox2d>
<vertex2d>3D bbox(image): pt1~pt8</vertex2d>
<veh_size>3D bbox dimension(m)</veh_size>
<perspective>view: left/right</perspective>
<base_point>3D bbox base point(image): pt2</base_point>
<vertex3d>3D bbox(world): pt1~pt8</vertex3d>
<veh_loc_2d>3D bbox centroid(image)</veh_loc_2d>
</object>
<object>
...
</object>
...
</annotation>
Type | Annotation |
---|---|
car | Car |
truck | Truck |
bus | Bus |
All the images and annotations in SVLD-3D are available at Google Drive.
@article{tang2022CenterLoc3D,
title={CenterLoc3D: Monocular 3D Vehicle Localization Network for Roadside Surveillance Cameras},
author={Tang, Xinyao and Song, Huansheng and Wang, Wei and Zhao, Chunhui},
journal={arXiv preprint arXiv:2203.14550},
year={2022}
}