Skip to content

stdcoutzrh/ConvLSR-Net

Repository files navigation

ConvLSR-Net

This is the code for our paper:

Results

We repeated the experiment with 5 different random seeds. The average and best results of the 5 repetitions are as follows:

Method Dataset mIoU (Average) mIoU (Best)
ConvLSR-Net iSAID 70.8±0.11 70.89
ConvLSR-Net Vaihingen 84.56±0.06 84.64
ConvLSR-Net Potsdam 87.80±0.08 87.91
ConvLSR-Net LoveDA 54.77±0.08 54.86

Due to some random operations in the training stage, reproduced results (run once) may slightly different from the reported in paper.

Data Preprocessing

Please follw the GeoSeg to preprocess the LoveDA, Potsdam and Vaihingen dataset.

Please follow the mmsegmentation to preprocess the iSAID dataset.

Training

"-c" means the path of the config, use different config to train different models.

python train_supervision.py -c ./config/isaid/convlsrnet.py
python train_supervision_dp.py -c ./config/potsdam/convlsrnet.py
python train_supervision_dp.py -c ./config/vahingen/convlsrnet.py
python train_supervision_dp.py -c ./config/loveda/convlsrnet.py

Testing

iSAID

python test_isaid.py -c ./config/isaid/convlsrnet.py -o ~/fig_results/isaid/convlsrnet_isaid/  -t "d4"

Vaihingen

python test_vaihingen.py -c ./config/vaihingen/convlsrnet.py -o ~/fig_results/convlsrnet_vaihingen/ --rgb -t "d4"

Potsdam

python test_potsdam.py -c ./config/potsdam/convlsrnet.py -o ~/fig_results/convlsrnet_potsdam/ --rgb -t "d4"

LoveDA (Online Testing)

My LoveDA results: LoveDA Test Results

python test_loveda.py -c ./config/loveda/convlsrnet.py -o ~/fig_results/convlsrnet_loveda --rgb -t "d4"

Citation and Contact

If you find this project useful in your research, please consider citing our papers:

  • R. Zhang, Q. Zhang and G. Zhang, "LSRFormer: Efficient Transformer Supply Convolutional Neural Networks With Global Information for Aerial Image Segmentation," in IEEE Transactions on Geoscience and Remote Sensing, vol. 62, pp. 1-13, 2024, Art no. 5610713, doi: 10.1109/TGRS.2024.3366709.
@ARTICLE{10438484,
  author={Zhang, Renhe and Zhang, Qian and Zhang, Guixu},
  journal={IEEE Transactions on Geoscience and Remote Sensing}, 
  title={LSRFormer: Efficient Transformer Supply Convolutional Neural Networks With Global Information for Aerial Image Segmentation}, 
  year={2024},
  volume={62},
  number={},
  pages={1-13},
  doi={10.1109/TGRS.2024.3366709}}

If you encounter any problems while running the code, feel free to contact me via [email protected]. Thank you!

Acknowledgement

Our training scripts comes from GeoSeg. Thanks for the author's open-sourcing code.

About

ConvLSR-Net (IEEE TGRS 2024)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages