Skip to content

Commit

Permalink
Merge pull request #139 from vks/fix-doctests
Browse files Browse the repository at this point in the history
Fix doctests
  • Loading branch information
troublescooter authored May 16, 2021
2 parents 8e51645 + 0b59c4e commit 763e293
Show file tree
Hide file tree
Showing 11 changed files with 84 additions and 71 deletions.
13 changes: 13 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
@@ -1,3 +1,16 @@
v0.14.0
- upgrade `rand` dependency to `0.8`
- fix inaccurate sampling of `Gamma`
- Implemented Empirical distribution
- Implemented Laplace distribution
- Removed Checked* traits
- Almost clippy-clean
- Almost fully enabled rustfmt
- Begin applying consistent numeric relative-accuracy targets with the approx crate
- Introduce macro to generate testing boilerplate, yet not all tests use this yet
- Moved to dynamic vectors in the MultivariateNormal distribution
- Reduced a number of distribution-specific traits into the Distribution and DiscreteDistribution traits

v0.13.0
- Implemented `MultivariateNormal` distribution (depends on `nalgebra 0.19`)
- Implemented `Dirac` distribution
Expand Down
4 changes: 2 additions & 2 deletions src/distribution/beta.rs
Original file line number Diff line number Diff line change
Expand Up @@ -291,7 +291,7 @@ impl Continuous<f64, f64> for Beta {
///
/// where `α` is shapeA, `β` is shapeB, and `Γ` is the gamma function
fn pdf(&self, x: f64) -> f64 {
if x < 0.0 || x > 1.0 {
if !(0.0..=1.0).contains(&x) {
0.0
} else if self.shape_a.is_infinite() {
if ulps_eq!(x, 1.0) {
Expand Down Expand Up @@ -329,7 +329,7 @@ impl Continuous<f64, f64> for Beta {
///
/// where `α` is shapeA, `β` is shapeB, and `Γ` is the gamma function
fn ln_pdf(&self, x: f64) -> f64 {
if x < 0.0 || x > 1.0 {
if !(0.0..=1.0).contains(&x) {
-INF
} else if self.shape_a.is_infinite() {
if ulps_eq!(x, 1.0) {
Expand Down
2 changes: 1 addition & 1 deletion src/distribution/categorical.rs
Original file line number Diff line number Diff line change
Expand Up @@ -282,7 +282,7 @@ pub fn prob_mass_to_cdf(prob_mass: &[f64]) -> Vec<f64> {
fn binary_index(search: &[f64], val: f64) -> usize {
use std::cmp;

let mut low = 0 as isize;
let mut low = 0_isize;
let mut high = search.len() as isize - 1;
while low <= high {
let mid = low + ((high - low) / 2);
Expand Down
2 changes: 1 addition & 1 deletion src/distribution/chi.rs
Original file line number Diff line number Diff line change
Expand Up @@ -145,7 +145,7 @@ impl Distribution<f64> for Chi {
/// where `k` is degrees of freedom and `Γ` is the gamma function
fn mean(&self) -> Option<f64> {
if self.freedom.is_infinite() {
return None;
None
} else if self.freedom > 300.0 {
// Large n approximation based on the Stirling series approximation to the Gamma function
// This avoids call the Gamma function with large arguments and returning NaN
Expand Down
2 changes: 1 addition & 1 deletion src/distribution/negative_binomial.rs
Original file line number Diff line number Diff line change
Expand Up @@ -51,7 +51,7 @@ impl NegativeBinomial {
if p.is_nan() || p < 0.0 || p > 1.0 || r.is_nan() || r < 0.0 {
Err(StatsError::BadParams)
} else {
Ok(NegativeBinomial { p, r })
Ok(NegativeBinomial { r, p })
}
}

Expand Down
2 changes: 1 addition & 1 deletion src/distribution/normal.rs
Original file line number Diff line number Diff line change
Expand Up @@ -90,7 +90,7 @@ impl ContinuousCDF<f64, f64> for Normal {
/// where `μ` is the mean, `σ` is the standard deviation and `erfc_inv` is
/// the inverse of the complementary error function
fn inverse_cdf(&self, x: f64) -> f64 {
if x < 0.0 || x > 1.0 {
if !(0.0..=1.0).contains(&x) {
panic!("x must be in [0, 1]");
} else {
self.mean - (self.std_dev * f64::consts::SQRT_2 * erf::erfc_inv(2.0 * x))
Expand Down
2 changes: 1 addition & 1 deletion src/distribution/students_t.rs
Original file line number Diff line number Diff line change
Expand Up @@ -155,7 +155,7 @@ impl ContinuousCDF<f64, f64> for StudentsT {
/// Student's T-distribution at `x`
fn inverse_cdf(&self, x: f64) -> f64 {
// first calculate inverse_cdf for normal Student's T
assert!(x >= 0.0 && x <= 1.0);
assert!((0.0..=1.0).contains(&x));
let x = 2. * x.min(1. - x);
let a = 0.5 * self.freedom;
let b = 0.5;
Expand Down
4 changes: 2 additions & 2 deletions src/function/beta.rs
Original file line number Diff line number Diff line change
Expand Up @@ -115,7 +115,7 @@ pub fn checked_beta_reg(a: f64, b: f64, x: f64) -> Result<f64> {
Err(StatsError::ArgMustBePositive("a"))
} else if b <= 0.0 {
Err(StatsError::ArgMustBePositive("b"))
} else if x < 0.0 || x > 1.0 {
} else if !(0.0..=1.0).contains(&x) {
Err(StatsError::ArgIntervalIncl("x", 0.0, 1.0))
} else {
let bt = if is_zero(x) || ulps_eq!(x, 1.0) {
Expand Down Expand Up @@ -275,7 +275,7 @@ pub fn inv_beta_reg(mut a: f64, mut b: f64, mut x: f64) -> f64 {
const SAE: i32 = -30;
const FPU: f64 = 1e-30; // 10^SAE

debug_assert!(x >= 0.0 && x <= 1.0 && a > 0.0 && b > 0.0);
debug_assert!((0.0..=1.0).contains(&x) && a > 0.0 && b > 0.0);

if x == 0.0 {
return 0.0;
Expand Down
2 changes: 1 addition & 1 deletion src/function/logistic.rs
Original file line number Diff line number Diff line change
Expand Up @@ -24,7 +24,7 @@ pub fn logit(p: f64) -> f64 {
///
/// If `p < 0.0` or `p > 1.0`
pub fn checked_logit(p: f64) -> Result<f64> {
if p < 0.0 || p > 1.0 {
if !(0.0..=1.0).contains(&p) {
Err(StatsError::ArgIntervalIncl("p", 0.0, 1.0))
} else {
Ok((p / (1.0 - p)).ln())
Expand Down
2 changes: 1 addition & 1 deletion src/statistics/slice_statistics.rs
Original file line number Diff line number Diff line change
Expand Up @@ -129,7 +129,7 @@ impl<D: AsMut<[f64]> + AsRef<[f64]>> OrderStatistics<f64> for Data<D> {
}

fn quantile(&mut self, tau: f64) -> f64 {
if tau < 0.0 || tau > 1.0 || self.is_empty() {
if !(0.0..=1.0).contains(&tau) || self.is_empty() {
return f64::NAN;
}

Expand Down
120 changes: 60 additions & 60 deletions src/statistics/statistics.rs
Original file line number Diff line number Diff line change
Expand Up @@ -28,14 +28,14 @@ pub trait Statistics<T> {
/// use std::f64;
/// use statrs::statistics::Statistics;
///
/// let x: [f64; 0] = [];
/// assert!(x.min().is_nan());
/// let x = &[];
/// assert!(Statistics::min(x).is_nan());
///
/// let y = [0.0, f64::NAN, 3.0, -2.0];
/// assert!(y.min().is_nan());
/// let y = &[0.0, f64::NAN, 3.0, -2.0];
/// assert!(Statistics::min(y).is_nan());
///
/// let z = [0.0, 3.0, -2.0];
/// assert_eq!(z.min(), -2.0);
/// let z = &[0.0, 3.0, -2.0];
/// assert_eq!(Statistics::min(z), -2.0);
/// ```
fn min(self) -> T;

Expand All @@ -51,14 +51,14 @@ pub trait Statistics<T> {
/// use std::f64;
/// use statrs::statistics::Statistics;
///
/// let x: [f64; 0] = [];
/// assert!(x.max().is_nan());
/// let x = &[];
/// assert!(Statistics::max(x).is_nan());
///
/// let y = [0.0, f64::NAN, 3.0, -2.0];
/// assert!(y.max().is_nan());
/// let y = &[0.0, f64::NAN, 3.0, -2.0];
/// assert!(Statistics::max(y).is_nan());
///
/// let z = [0.0, 3.0, -2.0];
/// assert_eq!(z.max(), 3.0);
/// let z = &[0.0, 3.0, -2.0];
/// assert_eq!(Statistics::max(z), 3.0);
/// ```
fn max(self) -> T;

Expand All @@ -74,13 +74,13 @@ pub trait Statistics<T> {
/// use std::f64;
/// use statrs::statistics::Statistics;
///
/// let x = [];
/// let x = &[];
/// assert!(x.abs_min().is_nan());
///
/// let y = [0.0, f64::NAN, 3.0, -2.0];
/// let y = &[0.0, f64::NAN, 3.0, -2.0];
/// assert!(y.abs_min().is_nan());
///
/// let z = [0.0, 3.0, -2.0];
/// let z = &[0.0, 3.0, -2.0];
/// assert_eq!(z.abs_min(), 0.0);
/// ```
fn abs_min(self) -> T;
Expand All @@ -97,13 +97,13 @@ pub trait Statistics<T> {
/// use std::f64;
/// use statrs::statistics::Statistics;
///
/// let x = [];
/// let x = &[];
/// assert!(x.abs_max().is_nan());
///
/// let y = [0.0, f64::NAN, 3.0, -2.0];
/// let y = &[0.0, f64::NAN, 3.0, -2.0];
/// assert!(y.abs_max().is_nan());
///
/// let z = [0.0, 3.0, -2.0, -8.0];
/// let z = &[0.0, 3.0, -2.0, -8.0];
/// assert_eq!(z.abs_max(), 8.0);
/// ```
fn abs_max(self) -> T;
Expand All @@ -125,13 +125,13 @@ pub trait Statistics<T> {
/// use statrs::statistics::Statistics;
///
/// # fn main() {
/// let x = [];
/// let x = &[];
/// assert!(x.mean().is_nan());
///
/// let y = [0.0, f64::NAN, 3.0, -2.0];
/// let y = &[0.0, f64::NAN, 3.0, -2.0];
/// assert!(y.mean().is_nan());
///
/// let z = [0.0, 3.0, -2.0];
/// let z = &[0.0, 3.0, -2.0];
/// assert_almost_eq!(z.mean(), 1.0 / 3.0, 1e-15);
/// # }
/// ```
Expand All @@ -155,19 +155,19 @@ pub trait Statistics<T> {
/// use statrs::statistics::Statistics;
///
/// # fn main() {
/// let x = [];
/// let x = &[];
/// assert!(x.geometric_mean().is_nan());
///
/// let y = [0.0, f64::NAN, 3.0, -2.0];
/// let y = &[0.0, f64::NAN, 3.0, -2.0];
/// assert!(y.geometric_mean().is_nan());
///
/// let mut z = [0.0, 3.0, -2.0];
/// let mut z = &[0.0, 3.0, -2.0];
/// assert!(z.geometric_mean().is_nan());
///
/// z = [0.0, 3.0, 2.0];
/// z = &[0.0, 3.0, 2.0];
/// assert_eq!(z.geometric_mean(), 0.0);
///
/// z = [1.0, 2.0, 3.0];
/// z = &[1.0, 2.0, 3.0];
/// // test value from online calculator, could be more accurate
/// assert_almost_eq!(z.geometric_mean(), 1.81712, 1e-5);
/// # }
Expand All @@ -194,19 +194,19 @@ pub trait Statistics<T> {
/// use statrs::statistics::Statistics;
///
/// # fn main() {
/// let x = [];
/// let x = &[];
/// assert!(x.harmonic_mean().is_nan());
///
/// let y = [0.0, f64::NAN, 3.0, -2.0];
/// let y = &[0.0, f64::NAN, 3.0, -2.0];
/// assert!(y.harmonic_mean().is_nan());
///
/// let mut z = [0.0, 3.0, -2.0];
/// let mut z = &[0.0, 3.0, -2.0];
/// assert!(z.harmonic_mean().is_nan());
///
/// z = [0.0, 3.0, 2.0];
/// z = &[0.0, 3.0, 2.0];
/// assert_eq!(z.harmonic_mean(), 0.0);
///
/// z = [1.0, 2.0, 3.0];
/// z = &[1.0, 2.0, 3.0];
/// // test value from online calculator, could be more accurate
/// assert_almost_eq!(z.harmonic_mean(), 1.63636, 1e-5);
/// # }
Expand All @@ -229,13 +229,13 @@ pub trait Statistics<T> {
/// use std::f64;
/// use statrs::statistics::Statistics;
///
/// let x = [];
/// let x = &[];
/// assert!(x.variance().is_nan());
///
/// let y = [0.0, f64::NAN, 3.0, -2.0];
/// let y = &[0.0, f64::NAN, 3.0, -2.0];
/// assert!(y.variance().is_nan());
///
/// let z = [0.0, 3.0, -2.0];
/// let z = &[0.0, 3.0, -2.0];
/// assert_eq!(z.variance(), 19.0 / 3.0);
/// ```
fn variance(self) -> T;
Expand All @@ -257,13 +257,13 @@ pub trait Statistics<T> {
/// use std::f64;
/// use statrs::statistics::Statistics;
///
/// let x = [];
/// let x = &[];
/// assert!(x.std_dev().is_nan());
///
/// let y = [0.0, f64::NAN, 3.0, -2.0];
/// let y = &[0.0, f64::NAN, 3.0, -2.0];
/// assert!(y.std_dev().is_nan());
///
/// let z = [0.0, 3.0, -2.0];
/// let z = &[0.0, 3.0, -2.0];
/// assert_eq!(z.std_dev(), (19f64 / 3.0).sqrt());
/// ```
fn std_dev(self) -> T;
Expand All @@ -283,13 +283,13 @@ pub trait Statistics<T> {
/// use std::f64;
/// use statrs::statistics::Statistics;
///
/// let x = [];
/// let x = &[];
/// assert!(x.population_variance().is_nan());
///
/// let y = [0.0, f64::NAN, 3.0, -2.0];
/// let y = &[0.0, f64::NAN, 3.0, -2.0];
/// assert!(y.population_variance().is_nan());
///
/// let z = [0.0, 3.0, -2.0];
/// let z = &[0.0, 3.0, -2.0];
/// assert_eq!(z.population_variance(), 38.0 / 9.0);
/// ```
fn population_variance(self) -> T;
Expand All @@ -309,13 +309,13 @@ pub trait Statistics<T> {
/// use std::f64;
/// use statrs::statistics::Statistics;
///
/// let x = [];
/// let x = &[];
/// assert!(x.population_std_dev().is_nan());
///
/// let y = [0.0, f64::NAN, 3.0, -2.0];
/// let y = &[0.0, f64::NAN, 3.0, -2.0];
/// assert!(y.population_std_dev().is_nan());
///
/// let z = [0.0, 3.0, -2.0];
/// let z = &[0.0, 3.0, -2.0];
/// assert_eq!(z.population_std_dev(), (38f64 / 9.0).sqrt());
/// ```
fn population_std_dev(self) -> T;
Expand Down Expand Up @@ -345,16 +345,16 @@ pub trait Statistics<T> {
/// use statrs::statistics::Statistics;
///
/// # fn main() {
/// let x = [];
/// let x = &[];
/// assert!(x.covariance(&[]).is_nan());
///
/// let y1 = [0.0, f64::NAN, 3.0, -2.0];
/// let y2 = [-5.0, 4.0, 10.0, f64::NAN];
/// assert!(y1.covariance(&y2).is_nan());
/// let y1 = &[0.0, f64::NAN, 3.0, -2.0];
/// let y2 = &[-5.0, 4.0, 10.0, f64::NAN];
/// assert!(y1.covariance(y2).is_nan());
///
/// let z1 = [0.0, 3.0, -2.0];
/// let z2 = [-5.0, 4.0, 10.0];
/// assert_almost_eq!(z1.covariance(&z2), -5.5, 1e-14);
/// let z1 = &[0.0, 3.0, -2.0];
/// let z2 = &[-5.0, 4.0, 10.0];
/// assert_almost_eq!(z1.covariance(z2), -5.5, 1e-14);
/// # }
/// ```
fn covariance(self, other: Self) -> T;
Expand Down Expand Up @@ -382,16 +382,16 @@ pub trait Statistics<T> {
/// use statrs::statistics::Statistics;
///
/// # fn main() {
/// let x = [];
/// let x = &[];
/// assert!(x.population_covariance(&[]).is_nan());
///
/// let y1 = [0.0, f64::NAN, 3.0, -2.0];
/// let y2 = [-5.0, 4.0, 10.0, f64::NAN];
/// assert!(y1.population_covariance(&y2).is_nan());
/// let y1 = &[0.0, f64::NAN, 3.0, -2.0];
/// let y2 = &[-5.0, 4.0, 10.0, f64::NAN];
/// assert!(y1.population_covariance(y2).is_nan());
///
/// let z1 = [0.0, 3.0, -2.0];
/// let z2 = [-5.0, 4.0, 10.0];
/// assert_almost_eq!(z1.population_covariance(&z2), -11.0 / 3.0, 1e-14);
/// let z1 = &[0.0, 3.0, -2.0];
/// let z2 = &[-5.0, 4.0, 10.0];
/// assert_almost_eq!(z1.population_covariance(z2), -11.0 / 3.0, 1e-14);
/// # }
/// ```
fn population_covariance(self, other: Self) -> T;
Expand All @@ -412,13 +412,13 @@ pub trait Statistics<T> {
/// use statrs::statistics::Statistics;
///
/// # fn main() {
/// let x = [];
/// let x = &[];
/// assert!(x.quadratic_mean().is_nan());
///
/// let y = [0.0, f64::NAN, 3.0, -2.0];
/// let y = &[0.0, f64::NAN, 3.0, -2.0];
/// assert!(y.quadratic_mean().is_nan());
///
/// let z = [0.0, 3.0, -2.0];
/// let z = &[0.0, 3.0, -2.0];
/// // test value from online calculator, could be more accurate
/// assert_almost_eq!(z.quadratic_mean(), 2.08167, 1e-5);
/// # }
Expand Down

0 comments on commit 763e293

Please sign in to comment.