Skip to content

Commit

Permalink
Deploying to gh-pages from @ 9be0270 🚀
Browse files Browse the repository at this point in the history
  • Loading branch information
iulusoy committed Nov 29, 2024
1 parent c1952bb commit f07d746
Show file tree
Hide file tree
Showing 10 changed files with 12 additions and 12 deletions.
Binary file modified build/doctrees/environment.pickle
Binary file not shown.
Original file line number Diff line number Diff line change
Expand Up @@ -94,7 +94,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## Import the ammico package."
"## Import the ammico package"
]
},
{
Expand Down
Binary file modified build/doctrees/notebooks/DemoNotebook_ammico.doctree
Binary file not shown.
Original file line number Diff line number Diff line change
Expand Up @@ -94,7 +94,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## Import the ammico package."
"## Import the ammico package"
]
},
{
Expand Down
2 changes: 1 addition & 1 deletion build/html/index.html
Original file line number Diff line number Diff line change
Expand Up @@ -104,7 +104,7 @@ <h1>Welcome to AMMICO’s documentation!<a class="headerlink" href="#welcome-to-
<li class="toctree-l1"><a class="reference internal" href="create_API_key_link.html">Instructions how to generate and enable a google Cloud Vision API key</a></li>
<li class="toctree-l1"><a class="reference internal" href="notebooks/DemoNotebook_ammico.html">AMMICO Demonstration Notebook</a><ul>
<li class="toctree-l2"><a class="reference internal" href="notebooks/DemoNotebook_ammico.html#Use-a-test-dataset">Use a test dataset</a></li>
<li class="toctree-l2"><a class="reference internal" href="notebooks/DemoNotebook_ammico.html#Import-the-ammico-package.">Import the ammico package.</a></li>
<li class="toctree-l2"><a class="reference internal" href="notebooks/DemoNotebook_ammico.html#Import-the-ammico-package">Import the ammico package</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="notebooks/DemoNotebook_ammico.html#Step-0:-Create-and-set-a-Google-Cloud-Vision-Key">Step 0: Create and set a Google Cloud Vision Key</a></li>
Expand Down
12 changes: 6 additions & 6 deletions build/html/notebooks/DemoNotebook_ammico.html
Original file line number Diff line number Diff line change
Expand Up @@ -53,7 +53,7 @@
<li class="toctree-l1"><a class="reference internal" href="../create_API_key_link.html">Instructions how to generate and enable a google Cloud Vision API key</a></li>
<li class="toctree-l1 current"><a class="current reference internal" href="#">AMMICO Demonstration Notebook</a><ul>
<li class="toctree-l2"><a class="reference internal" href="#Use-a-test-dataset">Use a test dataset</a></li>
<li class="toctree-l2"><a class="reference internal" href="#Import-the-ammico-package.">Import the ammico package.</a></li>
<li class="toctree-l2"><a class="reference internal" href="#Import-the-ammico-package">Import the ammico package</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="#Step-0:-Create-and-set-a-Google-Cloud-Vision-Key">Step 0: Create and set a Google Cloud Vision Key</a></li>
Expand Down Expand Up @@ -181,8 +181,8 @@ <h2>Use a test dataset<a class="headerlink" href="#Use-a-test-dataset" title="Li
</div>
</div>
</section>
<section id="Import-the-ammico-package.">
<h2>Import the ammico package.<a class="headerlink" href="#Import-the-ammico-package." title="Link to this heading"></a></h2>
<section id="Import-the-ammico-package">
<h2>Import the ammico package<a class="headerlink" href="#Import-the-ammico-package" title="Link to this heading"></a></h2>
<div class="nbinput nblast docutils container">
<div class="prompt highlight-none notranslate"><div class="highlight"><pre><span></span>[ ]:
</pre></div>
Expand Down Expand Up @@ -525,7 +525,7 @@ <h2>Read in a csv file containing text and translating/analysing the text<a clas
<section id="The-detector-modules">
<h1>The detector modules<a class="headerlink" href="#The-detector-modules" title="Link to this heading"></a></h1>
<p>The different detector modules with their options are explained in more detail in this section. ## Text detector Text on the images can be extracted using the <code class="docutils literal notranslate"><span class="pre">TextDetector</span></code> class (<code class="docutils literal notranslate"><span class="pre">text</span></code> module). The text is initally extracted using the Google Cloud Vision API and then translated into English with googletrans. The translated text is cleaned of whitespace, linebreaks, and numbers using Python syntax and spaCy.</p>
<p><img alt="f4400bee70e44c6d90786c092b35f56d" class="no-scaled-link" src="../_images/text_detector.png" style="width: 800px;" /></p>
<p><img alt="adf4ddf456154e7389f71f2402faec7f" class="no-scaled-link" src="../_images/text_detector.png" style="width: 800px;" /></p>
<p>The user can set if the text should be further summarized, and analyzed for sentiment and named entity recognition, by setting the keyword <code class="docutils literal notranslate"><span class="pre">analyse_text</span></code> to <code class="docutils literal notranslate"><span class="pre">True</span></code> (the default is <code class="docutils literal notranslate"><span class="pre">False</span></code>). If set, the transformers pipeline is used for each of these tasks, with the default models as of 03/2023. Other models can be selected by setting the optional keyword <code class="docutils literal notranslate"><span class="pre">model_names</span></code> to a list of selected models, on for each task:
<code class="docutils literal notranslate"><span class="pre">model_names=[&quot;sshleifer/distilbart-cnn-12-6&quot;,</span> <span class="pre">&quot;distilbert-base-uncased-finetuned-sst-2-english&quot;,</span> <span class="pre">&quot;dbmdz/bert-large-cased-finetuned-conll03-english&quot;]</span></code> for summary, sentiment, and ner. To be even more specific, revision numbers can also be selected by specifying the optional keyword <code class="docutils literal notranslate"><span class="pre">revision_numbers</span></code> to a list of revision numbers for each model, for example <code class="docutils literal notranslate"><span class="pre">revision_numbers=[&quot;a4f8f3e&quot;,</span> <span class="pre">&quot;af0f99b&quot;,</span> <span class="pre">&quot;f2482bf&quot;]</span></code>.</p>
<p>Please note that for the Google Cloud Vision API (the TextDetector class) you need to set a key in order to process the images. This key is ideally set as an environment variable using for example</p>
Expand Down Expand Up @@ -617,7 +617,7 @@ <h1>The detector modules<a class="headerlink" href="#The-detector-modules" title
<section id="Image-summary-and-query">
<h2>Image summary and query<a class="headerlink" href="#Image-summary-and-query" title="Link to this heading"></a></h2>
<p>The <code class="docutils literal notranslate"><span class="pre">SummaryDetector</span></code> can be used to generate image captions (<code class="docutils literal notranslate"><span class="pre">summary</span></code>) as well as visual question answering (<code class="docutils literal notranslate"><span class="pre">VQA</span></code>).</p>
<p><img alt="b1379e9ea34b493885cd309614a03acd" class="no-scaled-link" src="../_images/summary_detector.png" style="width: 800px;" /></p>
<p><img alt="2339669053964d559a7fcc0cbe8c34aa" class="no-scaled-link" src="../_images/summary_detector.png" style="width: 800px;" /></p>
<p>This module is based on the <a class="reference external" href="https://github.com/salesforce/LAVIS">LAVIS</a> library. Since the models can be quite large, an initial object is created which will load the necessary models into RAM/VRAM and then use them in the analysis. The user can specify the type of analysis to be performed using the <code class="docutils literal notranslate"><span class="pre">analysis_type</span></code> keyword. Setting it to <code class="docutils literal notranslate"><span class="pre">summary</span></code> will generate a caption (summary), <code class="docutils literal notranslate"><span class="pre">questions</span></code> will prepare answers (VQA) to a list of questions as set by the user,
<code class="docutils literal notranslate"><span class="pre">summary_and_questions</span></code> will do both. Note that the desired analysis type needs to be set here in the initialization of the detector object, and not when running the analysis for each image; the same holds true for the selected model.</p>
<p>The implemented models are listed below.</p>
Expand Down Expand Up @@ -880,7 +880,7 @@ <h3>BLIP2 models<a class="headerlink" href="#BLIP2-models" title="Link to this h
<section id="Detection-of-faces-and-facial-expression-analysis">
<h2>Detection of faces and facial expression analysis<a class="headerlink" href="#Detection-of-faces-and-facial-expression-analysis" title="Link to this heading"></a></h2>
<p>Faces and facial expressions are detected and analyzed using the <code class="docutils literal notranslate"><span class="pre">EmotionDetector</span></code> class from the <code class="docutils literal notranslate"><span class="pre">faces</span></code> module. Initially, it is detected if faces are present on the image using RetinaFace, followed by analysis if face masks are worn (Face-Mask-Detection). The probabilistic detection of age, gender, race, and emotions is carried out with deepface, but only if the disclosure statement has been accepted (see above).</p>
<p><img alt="363c2f37fc67455b92e6dcb3736074d4" class="no-scaled-link" src="../_images/emotion_detector.png" style="width: 800px;" /></p>
<p><img alt="917342082844417aabeed7f713000412" class="no-scaled-link" src="../_images/emotion_detector.png" style="width: 800px;" /></p>
<p>Depending on the features found on the image, the face detection module returns a different analysis content: If no faces are found on the image, all further steps are skipped and the result <code class="docutils literal notranslate"><span class="pre">&quot;face&quot;:</span> <span class="pre">&quot;No&quot;,</span> <span class="pre">&quot;multiple_faces&quot;:</span> <span class="pre">&quot;No&quot;,</span> <span class="pre">&quot;no_faces&quot;:</span> <span class="pre">0,</span> <span class="pre">&quot;wears_mask&quot;:</span> <span class="pre">[&quot;No&quot;],</span> <span class="pre">&quot;age&quot;:</span> <span class="pre">[None],</span> <span class="pre">&quot;gender&quot;:</span> <span class="pre">[None],</span> <span class="pre">&quot;race&quot;:</span> <span class="pre">[None],</span> <span class="pre">&quot;emotion&quot;:</span> <span class="pre">[None],</span> <span class="pre">&quot;emotion</span> <span class="pre">(category)&quot;:</span> <span class="pre">[None]</span></code> is returned. If one or several faces are found, up to three faces are analyzed if they are partially concealed by a face mask. If
yes, only age and gender are detected; if no, also race, emotion, and dominant emotion are detected. In case of the latter, the output could look like this: <code class="docutils literal notranslate"><span class="pre">&quot;face&quot;:</span> <span class="pre">&quot;Yes&quot;,</span> <span class="pre">&quot;multiple_faces&quot;:</span> <span class="pre">&quot;Yes&quot;,</span> <span class="pre">&quot;no_faces&quot;:</span> <span class="pre">2,</span> <span class="pre">&quot;wears_mask&quot;:</span> <span class="pre">[&quot;No&quot;,</span> <span class="pre">&quot;No&quot;],</span> <span class="pre">&quot;age&quot;:</span> <span class="pre">[27,</span> <span class="pre">28],</span> <span class="pre">&quot;gender&quot;:</span> <span class="pre">[&quot;Man&quot;,</span> <span class="pre">&quot;Man&quot;],</span> <span class="pre">&quot;race&quot;:</span> <span class="pre">[&quot;asian&quot;,</span> <span class="pre">None],</span> <span class="pre">&quot;emotion&quot;:</span> <span class="pre">[&quot;angry&quot;,</span> <span class="pre">&quot;neutral&quot;],</span> <span class="pre">&quot;emotion</span> <span class="pre">(category)&quot;:</span> <span class="pre">[&quot;Negative&quot;,</span> <span class="pre">&quot;Neutral&quot;]</span></code>, where for the two faces that are detected (given by <code class="docutils literal notranslate"><span class="pre">no_faces</span></code>), some of the values are returned as a list
with the first item for the first (largest) face and the second item for the second (smaller) face (for example, <code class="docutils literal notranslate"><span class="pre">&quot;emotion&quot;</span></code> returns a list <code class="docutils literal notranslate"><span class="pre">[&quot;angry&quot;,</span> <span class="pre">&quot;neutral&quot;]</span></code> signifying the first face expressing anger, and the second face having a neutral expression).</p>
Expand Down
2 changes: 1 addition & 1 deletion build/html/notebooks/DemoNotebook_ammico.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -94,7 +94,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## Import the ammico package."
"## Import the ammico package"
]
},
{
Expand Down
Binary file modified build/html/objects.inv
Binary file not shown.
2 changes: 1 addition & 1 deletion build/html/searchindex.js

Large diffs are not rendered by default.

2 changes: 1 addition & 1 deletion source/notebooks/DemoNotebook_ammico.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -94,7 +94,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## Import the ammico package."
"## Import the ammico package"
]
},
{
Expand Down

0 comments on commit f07d746

Please sign in to comment.