Skip to content

Commit

Permalink
Set DQ of ref pixels to DO_NOT_USE after refpix correction
Browse files Browse the repository at this point in the history
  • Loading branch information
jdavies-st committed Oct 28, 2022
1 parent d810818 commit 77e6f86
Show file tree
Hide file tree
Showing 4 changed files with 72 additions and 45 deletions.
5 changes: 5 additions & 0 deletions CHANGES.rst
Original file line number Diff line number Diff line change
Expand Up @@ -342,6 +342,11 @@ ramp_fitting
removing NaNs from the rateints product and setting appropriate DQ
flags. [#6949]

refpix
------

- Set DQ of ref pixels to DO_NOT_USE after `refpix` correction [#7017]

resample
--------

Expand Down
2 changes: 2 additions & 0 deletions docs/jwst/refpix/description.rst
Original file line number Diff line number Diff line change
Expand Up @@ -77,6 +77,8 @@ NIR Detector Data
subtracted from the full group on a row-by-row basis. Note that the ``odd_even_rows``
parameter is ignored for NIR data when the side reference pixels are processed.
#. Transform the data back to the JWST focal plane, or DMS, frame.
#. Flag reference pixel locations in DQ array as DO_NOT_USE now that the correction is
complete, so that they are not used in ramp fitting or any other downstream steps.

MIR Detector Data
+++++++++++++++++
Expand Down
46 changes: 23 additions & 23 deletions jwst/refpix/reference_pixels.py
Original file line number Diff line number Diff line change
Expand Up @@ -47,10 +47,13 @@
from ..datamodels import dqflags
from ..lib import reffile_utils


log = logging.getLogger(__name__)
log.setLevel(logging.DEBUG)

#
DO_NOT_USE = dqflags.pixel["DO_NOT_USE"]
REFERENCE_PIXEL = dqflags.pixel["REFERENCE_PIXEL"]

# NIR Reference section dictionaries are zero indexed and specify the values
# to be used in the following slice:
# (rowstart: rowstop, colstart:colstop)
Expand Down Expand Up @@ -216,15 +219,14 @@ def sigma_clip(self, data, dq, low=3.0, high=3.0):
"""

#
# Only calculate the clipped mean for pixels that don't have the DO_NOT_USE
# DQ bit set
goodpixels = np.where(np.bitwise_and(dq, dqflags.pixel['DO_NOT_USE']) == 0)
#
# DQ bit set. Create a boolean mask.
goodpixels = np.bitwise_and(dq, DO_NOT_USE) != DO_NOT_USE

# If there are no good pixels, return None
if len(goodpixels[0]) == 0:
if not goodpixels.any():
return None
#

# scipy routine fails if the pixels all have exactly the same value
if np.std(data[goodpixels], dtype=np.float64) != 0.0:
clipped_ref, lowlim, uplim = stats.sigmaclip(data[goodpixels],
Expand Down Expand Up @@ -261,11 +263,10 @@ def get_pixeldq(self):
fullcols = 2048
self.full_shape = (fullrows, fullcols)
pixeldq = np.zeros(self.full_shape, dtype=self.input_model.pixeldq.dtype)
refpixdq_dontuse = dqflags.pixel['DO_NOT_USE'] | dqflags.pixel['REFERENCE_PIXEL']
pixeldq[0:4, :] = refpixdq_dontuse
pixeldq[fullrows - 4:fullrows, :] = refpixdq_dontuse
pixeldq[4:fullrows - 4, 0:4] = refpixdq_dontuse
pixeldq[4:fullrows - 4, fullcols - 4:fullcols] = refpixdq_dontuse
pixeldq[0:4, :] = DO_NOT_USE | REFERENCE_PIXEL
pixeldq[fullrows - 4:fullrows, :] = DO_NOT_USE | REFERENCE_PIXEL
pixeldq[4:fullrows - 4, 0:4] = DO_NOT_USE | REFERENCE_PIXEL
pixeldq[4:fullrows - 4, fullcols - 4:fullcols] = DO_NOT_USE | REFERENCE_PIXEL
pixeldq[self.rowstart:self.rowstop, self.colstart:self.colstop] = self.input_model.pixeldq.copy()
else:
pixeldq = self.input_model.pixeldq.copy()
Expand Down Expand Up @@ -394,21 +395,19 @@ def log_parameters(self):
log.info('refpix processing skipped for this mode')

def count_good_side_refpixels(self):
donotuse = dqflags.pixel['DO_NOT_USE']
ngood = 0
for amplifier in 'AD':
rowstart, rowstop, colstart, colstop = NIR_reference_sections[amplifier]['side']
good = np.where(np.bitwise_and(self.pixeldq[rowstart:rowstop, colstart:colstop], donotuse) != donotuse)
good = np.where(np.bitwise_and(self.pixeldq[rowstart:rowstop, colstart:colstop], DO_NOT_USE) != DO_NOT_USE)
ngood += len(good[0])
return ngood

def count_good_top_bottom_refpixels(self):
donotuse = dqflags.pixel['DO_NOT_USE']
ngood = 0
for edge in ['top', 'bottom']:
for amplifier in 'ABCD':
rowstart, rowstop, colstart, colstop = NIR_reference_sections[amplifier][edge]
good = np.where(np.bitwise_and(self.pixeldq[rowstart:rowstop, colstart:colstop], donotuse) != donotuse)
good = np.where(np.bitwise_and(self.pixeldq[rowstart:rowstop, colstart:colstop], DO_NOT_USE) != DO_NOT_USE)
ngood += len(good[0])
return ngood

Expand Down Expand Up @@ -825,7 +824,7 @@ def median_filter(self, data, dq, smoothing_length):
rowstart = i
rowstop = rowstart + smoothing_length
goodpixels = np.where(np.bitwise_and(augmented_dq[rowstart:rowstop],
dqflags.pixel['DO_NOT_USE']) == 0)
DO_NOT_USE) == 0)
if len(goodpixels[0]) == 0:
result[i] = np.nan
else:
Expand Down Expand Up @@ -1012,17 +1011,14 @@ def do_subarray_corrections(self):
"""Do corrections for subarray. Reference pixel value calculated
separately for odd and even columns if odd_even_columns is True,
otherwise a single number calculated from all reference pixels"""
#

# First transform to detector coordinates
#
refdq = dqflags.pixel['REFERENCE_PIXEL']
donotuse = dqflags.pixel['DO_NOT_USE']
#
# This transforms the pixeldq array from DMS to detector coordinates,
# only needs to be done once
self.DMS_to_detector_dq()
# Determined refpix indices to use on each group
refpixindices = np.where((self.pixeldq & refdq == refdq) & (self.pixeldq & donotuse != donotuse))
refpixindices = np.where((self.pixeldq & REFERENCE_PIXEL == REFERENCE_PIXEL) & (self.pixeldq & DO_NOT_USE != DO_NOT_USE))
nrefpixels = len(refpixindices[0])
if nrefpixels == 0:
self.bad_reference_pixels = True
Expand Down Expand Up @@ -1931,6 +1927,10 @@ def correct_model(input_model, odd_even_columns,
input_dataset.log_parameters()
reference_pixel_correction(input_dataset)

# Now that they are corrected, flag reference pixels as DO_NOT_USE
mask = input_model.pixeldq & REFERENCE_PIXEL == REFERENCE_PIXEL
input_model.pixeldq[mask] |= DO_NOT_USE

return REFPIX_OK


Expand Down Expand Up @@ -2044,7 +2044,7 @@ def setup_dataset_for_zeroframe(input_dataset, saved_values):
gdtype = input_dataset.input_model.groupdq.dtype
gdq = np.zeros(dims, dtype=gdtype)
wh_zero = saved_values[-1]
gdq[wh_zero] = dqflags.pixel['DO_NOT_USE']
gdq[wh_zero] = DO_NOT_USE
gdq = gdq.reshape(new_dims)

# Setup dataset with ZEROFRAME data
Expand Down
64 changes: 42 additions & 22 deletions jwst/refpix/tests/test_refpix.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,10 @@
from jwst.refpix.reference_pixels import Dataset, NIRDataset, correct_model, create_dataset


REFERENCE_PIXEL = dqflags.pixel["REFERENCE_PIXEL"]
DO_NOT_USE = dqflags.pixel["DO_NOT_USE"]


def test_refpix_subarray():
'''Check that the correction is skipped for MIR subarray data '''

Expand Down Expand Up @@ -59,8 +63,8 @@ def test_each_amp():
im.data[:, 1:, :, 1031] = 4.0

# set reference pixels to 'REFERENCE_PIXEL'
im.pixeldq[:, :4] = dqflags.pixel['REFERENCE_PIXEL']
im.pixeldq[:, 1028:] = dqflags.pixel['REFERENCE_PIXEL']
im.pixeldq[:, :4] = REFERENCE_PIXEL
im.pixeldq[:, 1028:] = REFERENCE_PIXEL

# run the step
out = RefPixStep.call(im)
Expand Down Expand Up @@ -103,8 +107,8 @@ def test_firstframe_sub():
im.data[:, :, :, 1031] = 4.0

# set reference pixels to 'REFERENCE_PIXEL'
im.pixeldq[:, :4] = dqflags.pixel['REFERENCE_PIXEL']
im.pixeldq[:, 1028:] = dqflags.pixel['REFERENCE_PIXEL']
im.pixeldq[:, :4] = REFERENCE_PIXEL
im.pixeldq[:, 1028:] = REFERENCE_PIXEL

# run the step
outim = RefPixStep.call(im)
Expand Down Expand Up @@ -148,8 +152,8 @@ def test_odd_even():
im.data[:, 1:, 0:ysize - 1:2, 1031] = 8.0

# set reference pixels to 'REFERENCE_PIXEL'
im.pixeldq[:, :4] = dqflags.pixel['REFERENCE_PIXEL']
im.pixeldq[:, 1028:] = dqflags.pixel['REFERENCE_PIXEL']
im.pixeldq[:, :4] = REFERENCE_PIXEL
im.pixeldq[:, 1028:] = REFERENCE_PIXEL

# run the step
out = RefPixStep.call(im)
Expand All @@ -165,6 +169,11 @@ def test_odd_even():
assert out.data[0, 5, 101, 6] == 47.0
assert out.data[0, 5, 101, 7] == 46.0

# Make sure reference pixel DQs are set to DO_NOT_USE
mask1 = out.pixeldq & REFERENCE_PIXEL == REFERENCE_PIXEL
mask2 = out.pixeldq & DO_NOT_USE == DO_NOT_USE
np.testing.assert_array_equal(mask1, mask1 & mask2)


def test_no_odd_even():
'''Check that odd/even rows are not applied if flag is set to False'''
Expand Down Expand Up @@ -200,8 +209,8 @@ def test_no_odd_even():
im.data[:, 1:, 0:ysize - 1:2, 1031] = 8.0

# set reference pixels to 'REFERENCE_PIXEL'
im.pixeldq[:, :4] = dqflags.pixel['REFERENCE_PIXEL']
im.pixeldq[:, 1028:] = dqflags.pixel['REFERENCE_PIXEL']
im.pixeldq[:, :4] = REFERENCE_PIXEL
im.pixeldq[:, 1028:] = REFERENCE_PIXEL

# run the step
out = RefPixStep.call(im, odd_even_rows=False)
Expand Down Expand Up @@ -240,8 +249,8 @@ def test_side_averaging():
im.data[:, 1:, :, 1028:] = 2.0

# set reference pixels to 'REFERENCE_PIXEL'
im.pixeldq[:, :4] = dqflags.pixel['REFERENCE_PIXEL']
im.pixeldq[:, 1028:] = dqflags.pixel['REFERENCE_PIXEL']
im.pixeldq[:, :4] = REFERENCE_PIXEL
im.pixeldq[:, 1028:] = REFERENCE_PIXEL

# run the step
out = RefPixStep.call(im)
Expand Down Expand Up @@ -271,8 +280,8 @@ def test_above_sigma():
im.data[0, 3, 50, 3] = 35.0

# set reference pixels to 'REFERENCE_PIXEL'
im.pixeldq[:, :4] = dqflags.pixel['REFERENCE_PIXEL']
im.pixeldq[:, 1028:] = dqflags.pixel['REFERENCE_PIXEL']
im.pixeldq[:, :4] = REFERENCE_PIXEL
im.pixeldq[:, 1028:] = REFERENCE_PIXEL

# run the step
out = RefPixStep.call(im)
Expand Down Expand Up @@ -305,9 +314,9 @@ def test_nan_refpix():
im.data[0, 3, 50, 3] = np.nan

# set reference pixels to 'REFERENCE_PIXEL'
im.pixeldq[:, :4] = dqflags.pixel['REFERENCE_PIXEL']
im.pixeldq[:, 1028:] = dqflags.pixel['REFERENCE_PIXEL']
im.pixeldq[50, 3] = dqflags.pixel['DO_NOT_USE']
im.pixeldq[:, :4] = REFERENCE_PIXEL
im.pixeldq[:, 1028:] = REFERENCE_PIXEL
im.pixeldq[50, 3] = DO_NOT_USE

# run the step
out = RefPixStep.call(im)
Expand Down Expand Up @@ -341,8 +350,8 @@ def test_do_corrections_subarray_no_oddEven(setup_subarray_cube):
input_model.data[0, 0, :, :] = dataval
input_model.data[0, 0, :4, :] = bottom_rpix
input_model.data[0, 0, :, :4] = left_rpix
input_model.pixeldq[:4, :] = dqflags.pixel['REFERENCE_PIXEL']
input_model.pixeldq[:, :4] = dqflags.pixel['REFERENCE_PIXEL']
input_model.pixeldq[:4, :] = REFERENCE_PIXEL
input_model.pixeldq[:, :4] = REFERENCE_PIXEL

init_dataset = create_dataset(input_model,
odd_even_columns,
Expand Down Expand Up @@ -383,8 +392,8 @@ def test_do_corrections_subarray(setup_subarray_cube):
input_model.data[0, 0, :, :] = dataval
input_model.data[0, 0, :4, :] = bottom_rpix
input_model.data[0, 0, :, :4] = left_rpix
input_model.pixeldq[:4, :] = dqflags.pixel['REFERENCE_PIXEL']
input_model.pixeldq[:, :4] = dqflags.pixel['REFERENCE_PIXEL']
input_model.pixeldq[:4, :] = REFERENCE_PIXEL
input_model.pixeldq[:, :4] = REFERENCE_PIXEL

init_dataset = create_dataset(input_model,
odd_even_columns,
Expand Down Expand Up @@ -453,9 +462,9 @@ def test_do_corrections_subarray_4amp(setup_subarray_cube):
input_model.data[0, 0, :, 1:4:2] = left_rpix + bottom_rpix_a_even
input_model.data[0, 0, :, -4::2] = right_rpix + bottom_rpix_d_odd
input_model.data[0, 0, :, -3::2] = right_rpix + bottom_rpix_d_even
input_model.pixeldq[:4, :] = dqflags.pixel['REFERENCE_PIXEL']
input_model.pixeldq[:, :4] = dqflags.pixel['REFERENCE_PIXEL']
input_model.pixeldq[:, -4:] = dqflags.pixel['REFERENCE_PIXEL']
input_model.pixeldq[:4, :] = REFERENCE_PIXEL
input_model.pixeldq[:, :4] = REFERENCE_PIXEL
input_model.pixeldq[:, -4:] = REFERENCE_PIXEL

init_dataset = create_dataset(input_model,
odd_even_columns,
Expand Down Expand Up @@ -752,6 +761,12 @@ def test_correct_model(setup_cube, instr, det):
input_model.data[0, 0, :, :] = rpix
input_model.data[0, 0, 4:-4, 4:-4] = dataval

# Populate DQ array with REFERENCE_PIXEL where appropriate
input_model.pixeldq[:4,:] = REFERENCE_PIXEL
input_model.pixeldq[-4:,:] = REFERENCE_PIXEL
input_model.pixeldq[:,:4] = REFERENCE_PIXEL
input_model.pixeldq[:,-4:] = REFERENCE_PIXEL

correct_model(input_model,
odd_even_columns,
use_side_ref_pixels,
Expand All @@ -762,6 +777,11 @@ def test_correct_model(setup_cube, instr, det):
np.testing.assert_almost_equal(np.mean(input_model.data[0, 0, :4, 4:-4]), 0, decimal=0)
np.testing.assert_almost_equal(np.mean(input_model.data[0, 0, 4:-4, 4:-4]), dataval - rpix, decimal=0)

# Make sure reference pixel DQs are set to DO_NOT_USE
mask1 = input_model.pixeldq & REFERENCE_PIXEL == REFERENCE_PIXEL
mask2 = input_model.pixeldq & DO_NOT_USE == DO_NOT_USE
np.testing.assert_array_equal(mask1, mask1 & mask2)


def test_zero_frame(setup_cube):
"""
Expand Down

0 comments on commit 77e6f86

Please sign in to comment.