Skip to content

Commit

Permalink
feat(yolox): support torch amp and img caching, update preprocess log…
Browse files Browse the repository at this point in the history
…ic (Megvii-BaseDetection#523)

feat(yolox): support torch amp and img caching, update preprocess logic
  • Loading branch information
GOATmessi8 authored Aug 19, 2021
1 parent e1052df commit c9fe0aa
Show file tree
Hide file tree
Showing 34 changed files with 615 additions and 424 deletions.
45 changes: 33 additions & 12 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,7 @@ This repo is an implementation of PyTorch version YOLOX, there is also a [MegEng
<img src="assets/git_fig.png" width="1000" >

## Updates!!
* 【2021/08/19】 We optimize the training process with **2x** faster training and **~1%** higher performance! See [notes](docs/updates_note.md) for more details.
* 【2021/08/05】 We release [MegEngine version YOLOX](https://github.com/MegEngine/YOLOX).
* 【2021/07/28】 We fix the fatal error of [memory leak](https://github.com/Megvii-BaseDetection/YOLOX/issues/103)
* 【2021/07/26】 We now support [MegEngine](https://github.com/Megvii-BaseDetection/YOLOX/tree/main/demo/MegEngine) deployment.
Expand All @@ -24,6 +25,18 @@ This repo is an implementation of PyTorch version YOLOX, there is also a [MegEng
## Benchmark

#### Standard Models.

|Model |size |mAP<sup>val<br>0.5:0.95 |mAP<sup>test<br>0.5:0.95 | Speed V100<br>(ms) | Params<br>(M) |FLOPs<br>(G)| weights |
| ------ |:---: | :---: | :---: |:---: |:---: | :---: | :----: |
|[YOLOX-s](./exps/default/yolox_s.py) |640 |40.5 |40.5 |9.8 |9.0 | 26.8 | [github](https://github.com/Megvii-BaseDetection/YOLOX/releases/download/0.1.1rc0/yolox_s.pth) |
|[YOLOX-m](./exps/default/yolox_m.py) |640 |46.9 |47.2 |12.3 |25.3 |73.8| [github](https://github.com/Megvii-BaseDetection/YOLOX/releases/download/0.1.1rc0/yolox_m.pth) |
|[YOLOX-l](./exps/default/yolox_l.py) |640 |47.7 |50.1 |14.5 |54.2| 155.6 | [github](https://github.com/Megvii-BaseDetection/YOLOX/releases/download/0.1.1rc0/yolox_l.pth) |
|[YOLOX-x](./exps/default/yolox_x.py) |640 |51.1 |**51.5** | 17.3 |99.1 |281.9 | [github](https://github.com/Megvii-BaseDetection/YOLOX/releases/download/0.1.1rc0/yolox_x.pth) |
|[YOLOX-Darknet53](./exps/default/yolov3.py) |640 | 47.7 | 48.0 | 11.1 |63.7 | 185.3 | [github](https://github.com/Megvii-BaseDetection/YOLOX/releases/download/0.1.1rc0/yolox_darknet.pth) |

<details>
<summary>Legacy models</summary>

|Model |size |mAP<sup>test<br>0.5:0.95 | Speed V100<br>(ms) | Params<br>(M) |FLOPs<br>(G)| weights |
| ------ |:---: | :---: |:---: |:---: | :---: | :----: |
|[YOLOX-s](./exps/default/yolox_s.py) |640 |39.6 |9.8 |9.0 | 26.8 | [onedrive](https://megvii-my.sharepoint.cn/:u:/g/personal/gezheng_megvii_com/EW62gmO2vnNNs5npxjzunVwB9p307qqygaCkXdTO88BLUg?e=NMTQYw)/[github](https://github.com/Megvii-BaseDetection/storage/releases/download/0.0.1/yolox_s.pth) |
Expand All @@ -32,11 +45,25 @@ This repo is an implementation of PyTorch version YOLOX, there is also a [MegEng
|[YOLOX-x](./exps/default/yolox_x.py) |640 |**51.2** | 17.3 |99.1 |281.9 | [onedrive](https://megvii-my.sharepoint.cn/:u:/g/personal/gezheng_megvii_com/EdgVPHBziOVBtGAXHfeHI5kBza0q9yyueMGdT0wXZfI1rQ?e=tABO5u)/[github](https://github.com/Megvii-BaseDetection/storage/releases/download/0.0.1/yolox_x.pth) |
|[YOLOX-Darknet53](./exps/default/yolov3.py) |640 | 47.4 | 11.1 |63.7 | 185.3 | [onedrive](https://megvii-my.sharepoint.cn/:u:/g/personal/gezheng_megvii_com/EZ-MV1r_fMFPkPrNjvbJEMoBLOLAnXH-XKEB77w8LhXL6Q?e=mf6wOc)/[github](https://github.com/Megvii-BaseDetection/storage/releases/download/0.0.1/yolox_darknet53.pth) |

</details>

#### Light Models.

|Model |size |mAP<sup>val<br>0.5:0.95 | Params<br>(M) |FLOPs<br>(G)| weights |
| ------ |:---: | :---: |:---: |:---: | :---: |
|[YOLOX-Nano](./exps/default/nano.py) |416 |25.3 | 0.91 |1.08 | [onedrive](https://megvii-my.sharepoint.cn/:u:/g/personal/gezheng_megvii_com/EdcREey-krhLtdtSnxolxiUBjWMy6EFdiaO9bdOwZ5ygCQ?e=yQpdds)/[github](https://github.com/Megvii-BaseDetection/storage/releases/download/0.0.1/yolox_nano.pth) |
|[YOLOX-Tiny](./exps/default/yolox_tiny.py) |416 |32.8 | 5.06 |6.45 | [onedrive](https://megvii-my.sharepoint.cn/:u:/g/personal/gezheng_megvii_com/EbZuinX5X1dJmNy8nqSRegABWspKw3QpXxuO82YSoFN1oQ?e=Q7V7XE)/[github](https://github.com/Megvii-BaseDetection/storage/releases/download/0.0.1/yolox_tiny_32dot8.pth) |
|[YOLOX-Nano](./exps/default/nano.py) |416 |25.8 | 0.91 |1.08 | [github](https://github.com/Megvii-BaseDetection/YOLOX/releases/download/0.1.1rc0/yolox_nano.pth) |
|[YOLOX-Tiny](./exps/default/yolox_tiny.py) |416 |32.8 | 5.06 |6.45 | [github](https://github.com/Megvii-BaseDetection/YOLOX/releases/download/0.1.1rc0/yolox_tiny.pth) |


<details>
<summary>Legacy models</summary>

|Model |size |mAP<sup>val<br>0.5:0.95 | Params<br>(M) |FLOPs<br>(G)| weights |
| ------ |:---: | :---: |:---: |:---: | :---: |
|[YOLOX-Nano](./exps/default/nano.py) |416 |25.3 | 0.91 |1.08 | [github](https://github.com/Megvii-BaseDetection/storage/releases/download/0.0.1/yolox_nano.pth) |
|[YOLOX-Tiny](./exps/default/yolox_tiny.py) |416 |32.8 | 5.06 |6.45 | [github](https://github.com/Megvii-BaseDetection/storage/releases/download/0.0.1/yolox_tiny_32dot8.pth) |

</details>

## Quick Start

Expand All @@ -50,15 +77,8 @@ cd YOLOX
pip3 install -U pip && pip3 install -r requirements.txt
pip3 install -v -e . # or python3 setup.py develop
```
Step2. Install [apex](https://github.com/NVIDIA/apex).

```shell
# skip this step if you don't want to train model.
git clone https://github.com/NVIDIA/apex
cd apex
pip3 install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./
```
Step3. Install [pycocotools](https://github.com/cocodataset/cocoapi).
Step2. Install [pycocotools](https://github.com/cocodataset/cocoapi).

```shell
pip3 install cython; pip3 install 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI'
Expand Down Expand Up @@ -100,18 +120,19 @@ ln -s /path/to/your/COCO ./datasets/COCO
Step2. Reproduce our results on COCO by specifying -n:

```shell
python tools/train.py -n yolox-s -d 8 -b 64 --fp16 -o
python tools/train.py -n yolox-s -d 8 -b 64 --fp16 -o [--cache]
yolox-m
yolox-l
yolox-x
```
* -d: number of gpu devices
* -b: total batch size, the recommended number for -b is num-gpu * 8
* --fp16: mixed precision training
* --cache: caching imgs into RAM to accelarate training, which need large system RAM.

When using -f, the above commands are equivalent to:
```shell
python tools/train.py -f exps/default/yolox_s.py -d 8 -b 64 --fp16 -o
python tools/train.py -f exps/default/yolox_s.py -d 8 -b 64 --fp16 -o [--cache]
exps/default/yolox_m.py
exps/default/yolox_l.py
exps/default/yolox_x.py
Expand Down
5 changes: 1 addition & 4 deletions demo/MegEngine/cpp/yolox.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -35,17 +35,14 @@ cv::Mat static_resize(cv::Mat &img) {
}

void blobFromImage(cv::Mat &img, float *blob_data) {
cv::cvtColor(img, img, cv::COLOR_BGR2RGB);
int channels = 3;
int img_h = img.rows;
int img_w = img.cols;
std::vector<float> mean = {0.485, 0.456, 0.406};
std::vector<float> std = {0.229, 0.224, 0.225};
for (size_t c = 0; c < channels; c++) {
for (size_t h = 0; h < img_h; h++) {
for (size_t w = 0; w < img_w; w++) {
blob_data[c * img_w * img_h + h * img_w + w] =
(((float)img.at<cv::Vec3b>(h, w)[c]) / 255.0f - mean[c]) / std[c];
(float)img.at<cv::Vec3b>(h, w)[c];
}
}
}
Expand Down
4 changes: 1 addition & 3 deletions demo/MegEngine/python/demo.py
Original file line number Diff line number Diff line change
Expand Up @@ -107,8 +107,6 @@ def __init__(
self.confthre = confthre
self.nmsthre = nmsthre
self.test_size = test_size
self.rgb_means = (0.485, 0.456, 0.406)
self.std = (0.229, 0.224, 0.225)

def inference(self, img):
img_info = {"id": 0}
Expand All @@ -125,7 +123,7 @@ def inference(self, img):
img_info["width"] = width
img_info["raw_img"] = img

img, ratio = preprocess(img, self.test_size, self.rgb_means, self.std)
img, ratio = preprocess(img, self.test_size)
img_info["ratio"] = ratio
img = F.expand_dims(mge.tensor(img), 0)

Expand Down
14 changes: 7 additions & 7 deletions demo/ONNXRuntime/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -6,13 +6,13 @@ This doc introduces how to convert your pytorch model into onnx, and how to run

| Model | Parameters | GFLOPs | Test Size | mAP | Weights |
|:------| :----: | :----: | :---: | :---: | :---: |
| YOLOX-Nano | 0.91M | 1.08 | 416x416 | 25.3 | [onedrive](https://megvii-my.sharepoint.cn/:u:/g/personal/gezheng_megvii_com/EfAGwvevU-lNhW5OqFAyHbwBJdI_7EaKu5yU04fgF5BU7w?e=gvq4hf)/[github](https://github.com/Megvii-BaseDetection/storage/releases/download/0.0.1/yolox_nano.onnx) |
| YOLOX-Tiny | 5.06M | 6.45 | 416x416 |32.8 | [onedrive](https://megvii-my.sharepoint.cn/:u:/g/personal/gezheng_megvii_com/ET64VPoEV8FAm5YBiEj5JXwBVn_KYHM38iJQ_lpcK2slYw?e=uuJ7Ii)/[github](https://github.com/Megvii-BaseDetection/storage/releases/download/0.0.1/yolox_tiny_32dot8.onnx) |
| YOLOX-S | 9.0M | 26.8 | 640x640 |39.6 | [onedrive](https://megvii-my.sharepoint.cn/:u:/g/personal/gezheng_megvii_com/Ec0L1d1x2UtIpbfiahgxhtgBZVjb1NCXbotO8SCOdMqpQQ?e=siyIsK)/[github](https://github.com/Megvii-BaseDetection/storage/releases/download/0.0.1/yolox_s.onnx) |
| YOLOX-M | 25.3M | 73.8 | 640x640 |46.4 | [onedrive](https://megvii-my.sharepoint.cn/:u:/g/personal/gezheng_megvii_com/ERUKlQe-nlxBoTKPy1ynbxsBmAZ_h-VBEV-nnfPdzUIkZQ?e=hyQQtl)/[github](https://github.com/Megvii-BaseDetection/storage/releases/download/0.0.1/yolox_m.onnx) |
| YOLOX-L | 54.2M | 155.6 | 640x640 |50.0 | [onedrive](https://megvii-my.sharepoint.cn/:u:/g/personal/gezheng_megvii_com/ET5w926jCA5GlVfg9ixB4KEBiW0HYl7SzaHNRaRG9dYO_A?e=ISmCYX)/[github](https://github.com/Megvii-BaseDetection/storage/releases/download/0.0.1/yolox_l.onnx) |
| YOLOX-Darknet53| 63.72M | 185.3 | 640x640 |47.3 | [onedrive](https://megvii-my.sharepoint.cn/:u:/g/personal/gezheng_megvii_com/ESArloSW-MlPlLuemLh9zKkBdovgweKbfu4zkvzKAp7pPQ?e=f81Ikw)/[github](https://github.com/Megvii-BaseDetection/storage/releases/download/0.0.1/yolox_darknet53.onnx) |
| YOLOX-X | 99.1M | 281.9 | 640x640 |51.2 | [onedrive](https://megvii-my.sharepoint.cn/:u:/g/personal/gezheng_megvii_com/ERjqoeMJlFdGuM3tQfXQmhABmGHlIHydWCwhlugeWLE9AA)/[github](https://github.com/Megvii-BaseDetection/storage/releases/download/0.0.1/yolox.onnx) |
| YOLOX-Nano | 0.91M | 1.08 | 416x416 | 25.8 |[github](https://github.com/Megvii-BaseDetection/YOLOX/releases/download/0.1.1rc0/yolox_nano.onnx) |
| YOLOX-Tiny | 5.06M | 6.45 | 416x416 |32.8 | [github](https://github.com/Megvii-BaseDetection/YOLOX/releases/download/0.1.1rc0/yolox_tiny.onnx) |
| YOLOX-S | 9.0M | 26.8 | 640x640 |40.5 | [github](https://github.com/Megvii-BaseDetection/YOLOX/releases/download/0.1.1rc0/yolox_s.onnx) |
| YOLOX-M | 25.3M | 73.8 | 640x640 |47.2 | [github](https://github.com/Megvii-BaseDetection/YOLOX/releases/download/0.1.1rc0/yolox_m.onnx) |
| YOLOX-L | 54.2M | 155.6 | 640x640 |50.1 | [github](https://github.com/Megvii-BaseDetection/YOLOX/releases/download/0.1.1rc0/yolox_l.onnx) |
| YOLOX-Darknet53| 63.72M | 185.3 | 640x640 |48.0 | [github](https://github.com/Megvii-BaseDetection/YOLOX/releases/download/0.1.1rc0/yolox_darknet.onnx) |
| YOLOX-X | 99.1M | 281.9 | 640x640 |51.5 | [github](https://github.com/Megvii-BaseDetection/YOLOX/releases/download/0.1.1rc0/yolox.onnx) |


### Convert Your Model to ONNX
Expand Down
4 changes: 1 addition & 3 deletions demo/ONNXRuntime/onnx_inference.py
Original file line number Diff line number Diff line change
Expand Up @@ -64,9 +64,7 @@ def make_parser():

input_shape = tuple(map(int, args.input_shape.split(',')))
origin_img = cv2.imread(args.image_path)
mean = (0.485, 0.456, 0.406)
std = (0.229, 0.224, 0.225)
img, ratio = preprocess(origin_img, input_shape, mean, std)
img, ratio = preprocess(origin_img, input_shape)

session = onnxruntime.InferenceSession(args.model)

Expand Down
18 changes: 10 additions & 8 deletions demo/OpenVINO/cpp/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -6,13 +6,13 @@ This toturial includes a C++ demo for OpenVINO, as well as some converted models

| Model | Parameters | GFLOPs | Test Size | mAP | Weights |
|:------| :----: | :----: | :---: | :---: | :---: |
| [YOLOX-Nano](../../../exps/nano.py) | 0.91M | 1.08 | 416x416 | 25.3 | [Download](https://megvii-my.sharepoint.cn/:u:/g/personal/gezheng_megvii_com/EeWY57o5wQZFtXYd1KJw6Z8B4vxZru649XxQHYIFgio3Qw?e=ZS81ce)/[github](https://github.com/Megvii-BaseDetection/storage/releases/download/0.0.1/yolox_nano_openvino.tar.gz) |
| [YOLOX-Tiny](../../../exps/yolox_tiny.py) | 5.06M | 6.45 | 416x416 |31.7 | [Download](https://megvii-my.sharepoint.cn/:u:/g/personal/gezheng_megvii_com/ETfvOoCXdVZNinoSpKA_sEYBIQVqfjjF5_M6VvHRnLVcsA?e=STL1pi)/[github](https://github.com/Megvii-BaseDetection/storage/releases/download/0.0.1/yolox_tiny_openvino.tar.gz) |
| [YOLOX-S](../../../exps/yolox_s.py) | 9.0M | 26.8 | 640x640 |39.6 | [Download](https://megvii-my.sharepoint.cn/:u:/g/personal/gezheng_megvii_com/EXUjf3PQnbBLrxNrXPueqaIBzVZOrYQOnJpLK1Fytj5ssA?e=GK0LOM)/[github](https://github.com/Megvii-BaseDetection/storage/releases/download/0.0.1/yolox_s_openvino.tar.gz) |
| [YOLOX-M](../../../exps/yolox_m.py) | 25.3M | 73.8 | 640x640 |46.4 | [Download](https://megvii-my.sharepoint.cn/:u:/g/personal/gezheng_megvii_com/EcoT1BPpeRpLvE_4c441zn8BVNCQ2naxDH3rho7WqdlgLQ?e=95VaM9)/[github](https://github.com/Megvii-BaseDetection/storage/releases/download/0.0.1/yolox_m_openvino.tar.gz) |
| [YOLOX-L](../../../exps/yolox_l.py) | 54.2M | 155.6 | 640x640 |50.0 | [Download](https://megvii-my.sharepoint.cn/:u:/g/personal/gezheng_megvii_com/EZvmn-YLRuVPh0GAP_w3xHMB2VGvrKqQXyK_Cv5yi_DXUg?e=YRh6Eq)/[github](https://github.com/Megvii-BaseDetection/storage/releases/download/0.0.1/yolox_l_openvino.tar.gz) |
| [YOLOX-Darknet53](../../../exps/yolov3.py) | 63.72M | 185.3 | 640x640 |47.3 | [Download](https://megvii-my.sharepoint.cn/:u:/g/personal/gezheng_megvii_com/EQP8LSroikFHuwX0jFRetmcBOCDWSFmylHxolV7ezUPXGw?e=bEw5iq)/[github](https://github.com/Megvii-BaseDetection/storage/releases/download/0.0.1/yolox_darknet53_openvino.tar.gz) |
| [YOLOX-X](../../../exps/yolox_x.py) | 99.1M | 281.9 | 640x640 |51.2 | [Download](https://megvii-my.sharepoint.cn/:u:/g/personal/gezheng_megvii_com/EZFPnLqiD-xIlt7rcZYDjQgB4YXE9wnq1qaSXQwJrsKbdg?e=83nwEz)/[github](https://github.com/Megvii-BaseDetection/storage/releases/download/0.0.1/yolox_x_openvino.tar.gz) |
| [YOLOX-Nano](../../../exps/default/nano.py) | 0.91M | 1.08 | 416x416 | 25.8 | [github](https://github.com/Megvii-BaseDetection/YOLOX/releases/download/0.1.1rc0/yolox_nano_openvino.tar.gz) |
| [YOLOX-Tiny](../../../exps/default/yolox_tiny.py) | 5.06M | 6.45 | 416x416 |32.8 | [github](https://github.com/Megvii-BaseDetection/YOLOX/releases/download/0.1.1rc0/yolox_tiny_openvino.tar.gz) |
| [YOLOX-S](../../../exps/default/yolox_s.py) | 9.0M | 26.8 | 640x640 |40.5 | [github](https://github.com/Megvii-BaseDetection/YOLOX/releases/download/0.1.1rc0/yolox_s_openvino.tar.gz) |
| [YOLOX-M](../../../exps/default/yolox_m.py) | 25.3M | 73.8 | 640x640 |47.2 | [github](https://github.com/Megvii-BaseDetection/YOLOX/releases/download/0.1.1rc0/yolox_m_openvino.tar.gz) |
| [YOLOX-L](../../../exps/default/yolox_l.py) | 54.2M | 155.6 | 640x640 |50.1 | [github](https://github.com/Megvii-BaseDetection/YOLOX/releases/download/0.1.1rc0/yolox_l_openvino.tar.gz) |
| [YOLOX-Darknet53](../../../exps/default/yolov3.py) | 63.72M | 185.3 | 640x640 |48.0 | [github](https://github.com/Megvii-BaseDetection/YOLOX/releases/download/0.1.1rc0/yolox_dark_openvino.tar.gz) |
| [YOLOX-X](../../../exps/default/yolox_x.py) | 99.1M | 281.9 | 640x640 |51.5 | [github](https://github.com/Megvii-BaseDetection/YOLOX/releases/download/0.1.1rc0/yolox_x_openvino.tar.gz) |

## Install OpenVINO Toolkit

Expand Down Expand Up @@ -72,9 +72,11 @@ source ~/.bashrc
```
For example:
```shell
python3 mo.py --input_model yolox.onnx --input_shape (1,3,640,640) --data_type FP16
python3 mo.py --input_model yolox_tiny.onnx --input_shape [1,3,416,416] --data_type FP16
```

Make sure the input shape is consistent with [those](yolox_openvino.cpp#L24-L25) in cpp file.

## Build

### Linux
Expand Down
6 changes: 1 addition & 5 deletions demo/OpenVINO/cpp/yolox_openvino.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -37,12 +37,9 @@ cv::Mat static_resize(cv::Mat& img) {
}

void blobFromImage(cv::Mat& img, Blob::Ptr& blob){
cv::cvtColor(img, img, cv::COLOR_BGR2RGB);
int channels = 3;
int img_h = img.rows;
int img_w = img.cols;
std::vector<float> mean = {0.485, 0.456, 0.406};
std::vector<float> std = {0.229, 0.224, 0.225};
InferenceEngine::MemoryBlob::Ptr mblob = InferenceEngine::as<InferenceEngine::MemoryBlob>(blob);
if (!mblob)
{
Expand All @@ -61,7 +58,7 @@ void blobFromImage(cv::Mat& img, Blob::Ptr& blob){
for (size_t w = 0; w < img_w; w++)
{
blob_data[c * img_w * img_h + h * img_w + w] =
(((float)img.at<cv::Vec3b>(h, w)[c]) / 255.0f - mean[c]) / std[c];
(float)img.at<cv::Vec3b>(h, w)[c];
}
}
}
Expand Down Expand Up @@ -513,7 +510,6 @@ int main(int argc, char* argv[]) {
auto moutputHolder = moutput->rmap();
const float* net_pred = moutputHolder.as<const PrecisionTrait<Precision::FP32>::value_type*>();

const int image_size = 416;
int img_w = image.cols;
int img_h = image.rows;
float scale = std::min(INPUT_W / (image.cols*1.0), INPUT_H / (image.rows*1.0));
Expand Down
Loading

0 comments on commit c9fe0aa

Please sign in to comment.