Skip to content

2D & 3D Jump Flooding Algorithm and 2D Centroidal Voronoi Tessellation based on taichi

Notifications You must be signed in to change notification settings

songshibo/JumpFlooding-taichi

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

49 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

2D/3D Voronoi tessellation using Jump Flooding algorithm(JFA). Adopt 1+JFA strategy to reduce errors.

2D Centroidal Voronoi Tessellation using Lloyd algorithm.

Usage

2D JFA solver

from JFA import jfa_solver_2D
jfa2d = jfa_solver_2D(width, height, sites)
  • width,height define the resolution of 2D texture.
  • sites is a numpy array that only stores the location information of all sites. The shape should be (num_site, 2).
jfa2d.solve_jfa(init_step)
  • init_step (tuple) the initial step length of JFA. Usually, init_step is . To reduce the computation time incurred by unnecessary JFA passes, init_step can be set to .

3D JFA solver

from JFA import jfa_solver_3D
jfa3d = jfa_solver_3D(width, height, length, sites)
jfa3d.solve_jfa(step)
  • all parameters are similar to jfa_solver_2D.

Output result or each step

# 2D / 3D output
# Render the result into screen based on the index of each pixel and site_info
jfa2d.render_color(screen, site_info)
jfa3d.debug_slice(screen, site_info, z_index)
# each step, remember to call init_sites before call jfa_step()
jfa2d.jfa_step(step_x, step_y)
jfa3d.jfa_step(step_x, step_y, step_z)
  • screen: ti.field(shape=(w,h,3)) , where 3 is for (r,g,b) channels.
  • site_info: a numpy array holds other information of all sites. (ie. color).
  • step_x,step_y,step_z : step size of each JFA pass(assigned manually).

2D CVT solver

from CVT_Lloyd import cvt_lloyd_solver_2D

cvt_solver = cvt_lloyd_solver_2D(width, height, sites)
cvt_solver.solve_cvt()
cvt_solver.jfa.render_color(screen, site_info)
  • parameters are similar to jfa_solver_2d
  • solve_cvt() will use as initial step size.
  • Call the function render_color of member variable jfa of cvt_lloyd_solver_2d to output the result.

Results

2D JFA & CVT: 512x512, 100 sites, initial step size=(128,128)

JFA CVT(iteration times: 250)

3D JFA: 512x512x512, 50 sites, initial step size=(256,256,256).

Each slice of the result (3D texture) is shown as GIF above.(shifting z index from 0 to 511)

Performance

I use Taichi KernelProfiler to output the detailed statistics.

Environment: Intel i7 9700K CPU (3.6 GHZ) and NVidia RTX 2060 SUPER GPU

  • 512x512 JFA, 100 sites, initial step size=(128,128)

    CUDA Profiler
    =========================================================================
    [      %     total   count |      min       avg       max   ] Kernel name
    [ 99.48%   0.098 s      1x |   97.580    97.580    97.580 ms] runtime_initialize
    [  0.23%   0.000 s      8x |    0.022     0.028     0.037 ms] jfa_step_c8_0_kernel_6_range_for
    [  0.11%   0.000 s     10x |    0.006     0.011     0.018 ms] jit_evaluator_0_kernel_2_serial
    [  0.04%   0.000 s      1x |    0.041     0.041     0.041 ms] runtime_initialize2
    [  0.04%   0.000 s      1x |    0.037     0.037     0.037 ms] matrix_to_ext_arr_c34_0_kernel_8_range_for
    [  0.03%   0.000 s      2x |    0.016     0.016     0.016 ms] jit_evaluator_1_kernel_3_serial
    [  0.03%   0.000 s      1x |    0.031     0.031     0.031 ms] render_color_c10_0_kernel_7_range_for
    [  0.01%   0.000 s      1x |    0.013     0.013     0.013 ms] init_sites_c4_0_kernel_4_range_for
    [  0.01%   0.000 s      1x |    0.009     0.009     0.009 ms] ext_arr_to_matrix_c36_0_kernel_0_range_for
    [  0.01%   0.000 s      1x |    0.009     0.009     0.009 ms] ext_arr_to_matrix_c36_1_kernel_1_range_for
    [  0.01%   0.000 s      1x |    0.006     0.006     0.006 ms] init_sites_c4_0_kernel_5_range_for
    -------------------------------------------------------------------------
    [100.00%] Total kernel execution time:   0.098 s   number of records: 11
    =========================================================================
    

    Actual computation time: 0.997ms

  • 512x512 CVT, 100 sites, initial step size=(128,128)

    iteration times: 250
    CUDA Profiler
    =========================================================================
    [      %     total   count |      min       avg       max   ] Kernel name
    [ 29.50%   0.098 s   2008x |    0.024     0.049     0.156 ms] jfa_step_c8_0_kernel_6_range_for
    [ 28.56%   0.095 s      1x |   94.816    94.816    94.816 ms] runtime_initialize
    [ 25.76%   0.085 s    251x |    0.293     0.341     0.404 ms] compute_centroids_c18_0_kernel_8_range_for
    [  2.64%   0.009 s    251x |    0.016     0.035     0.073 ms] cvt_convergence_check_c20_0_kernel_11_range_for
    [  2.58%   0.009 s    251x |    0.016     0.034     0.082 ms] compute_centroids_c18_0_kernel_9_range_for
    [  2.53%   0.008 s    251x |    0.015     0.033     0.073 ms] cvt_convergence_check_c20_0_kernel_12_serial
    [  2.49%   0.008 s    251x |    0.014     0.033     0.083 ms] cvt_convergence_check_c20_0_kernel_10_serial
    [  2.11%   0.007 s    251x |    0.011     0.028     0.065 ms] compute_centroids_c18_0_kernel_7_range_for
    [  1.49%   0.005 s    251x |    0.016     0.020     0.057 ms] init_sites_c4_0_kernel_4_range_for
    [  1.23%   0.004 s    251x |    0.008     0.016     0.063 ms] init_sites_c4_0_kernel_5_range_for
    [  0.97%   0.003 s    250x |    0.010     0.013     0.017 ms] assign_sites_c6_0_kernel_13_range_for
    [  0.08%   0.000 s     16x |    0.008     0.017     0.034 ms] jit_evaluator_0_kernel_2_serial
    [  0.01%   0.000 s      1x |    0.041     0.041     0.041 ms] runtime_initialize2
    [  0.01%   0.000 s      1x |    0.037     0.037     0.037 ms] ext_arr_to_matrix_c36_0_kernel_0_range_for
    [  0.01%   0.000 s      1x |    0.037     0.037     0.037 ms] render_color_c10_0_kernel_14_range_for
    [  0.01%   0.000 s      1x |    0.036     0.036     0.036 ms] matrix_to_ext_arr_c34_0_kernel_15_range_for
    [  0.01%   0.000 s      2x |    0.014     0.015     0.016 ms] jit_evaluator_1_kernel_3_serial
    [  0.01%   0.000 s      1x |    0.017     0.017     0.017 ms] ext_arr_to_matrix_c36_1_kernel_1_range_for
    -------------------------------------------------------------------------
    [100.00%] Total kernel execution time:   0.332 s   number of records: 18
    =========================================================================
    

    Time: 0.236s (without using the scheme GPU-CVT described in Sec.3.1 to further improve the JFA performance).

  • 512x512x512 JFA3D, 50 sites, initial step size=(256,256,256).

    CUDA Profiler
    =========================================================================
    [      %     total   count |      min       avg       max   ] Kernel name
    [ 89.95%   0.863 s      9x |   30.492    95.936   157.981 ms] jfa_step_c14_0_kernel_4_range_for
    [  9.88%   0.095 s      1x |   94.821    94.821    94.821 ms] runtime_initialize
    [  0.15%   0.001 s      1x |    1.418     1.418     1.418 ms] init_sites_c12_0_kernel_2_range_for
    [  0.01%   0.000 s     12x |    0.006     0.008     0.016 ms] runtime_retrieve_and_reset_error_code
    [  0.01%   0.000 s      1x |    0.059     0.059     0.059 ms] runtime_initialize2
    [  0.00%   0.000 s      1x |    0.016     0.016     0.016 ms] ext_arr_to_matrix_c32_0_kernel_0_range_for
    [  0.00%   0.000 s      1x |    0.008     0.008     0.008 ms] init_sites_c12_0_kernel_3_range_for
    [  0.00%   0.000 s      1x |    0.007     0.007     0.007 ms] ext_arr_to_matrix_c32_1_kernel_1_range_for
    -------------------------------------------------------------------------
    [100.00%] Total kernel execution time:   0.960 s   number of records: 8
    =========================================================================
    

    Time: 0.864s

Reference

Jump flooding in GPU with applications to Voronoi diagram and distance transform

GPU-Assisted Computation of Centroidal Voronoi Tessellation

Variants of Jump Flooding Algorithm for Computing Discrete Voronoi Diagrams

About

2D & 3D Jump Flooding Algorithm and 2D Centroidal Voronoi Tessellation based on taichi

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages