Skip to content

Commit

Permalink
SNOW-1559025 Implement DatetimeIndex.mean and DatetimeIndex.std (#…
Browse files Browse the repository at this point in the history
…2292)

1. Which Jira issue is this PR addressing? Make sure that there is an
accompanying issue to your PR.

   Fixes SNOW-1559025

2. Fill out the following pre-review checklist:

- [x] I am adding a new automated test(s) to verify correctness of my
new code
- [ ] If this test skips Local Testing mode, I'm requesting review from
@snowflakedb/local-testing
   - [ ] I am adding new logging messages
   - [ ] I am adding a new telemetry message
   - [ ] I am adding new credentials
   - [ ] I am adding a new dependency
- [ ] If this is a new feature/behavior, I'm adding the Local Testing
parity changes.

3. Please describe how your code solves the related issue.

Implemented `DatetimeIndex.mean` and `DatetimeIndex.std`.

---------

Co-authored-by: Andong Zhan <[email protected]>
  • Loading branch information
sfc-gh-vbudati and sfc-gh-azhan authored Sep 18, 2024
1 parent 4b3e76b commit a07902c
Show file tree
Hide file tree
Showing 4 changed files with 151 additions and 14 deletions.
1 change: 1 addition & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,7 @@
- Added support for some cases of aggregating `Timedelta` columns on `axis=0` with `agg` or `aggregate`.
- Added support for `by`, `left_by`, `right_by`, `left_index`, and `right_index` for `pd.merge_asof`.
- Added support for passing parameter `include_describe` to `Session.query_history`.
- Added support for `DatetimeIndex.mean` and `DatetimeIndex.std` methods.

#### Bug Fixes

Expand Down
4 changes: 2 additions & 2 deletions docs/source/modin/supported/datetime_index_supported.rst
Original file line number Diff line number Diff line change
Expand Up @@ -100,7 +100,7 @@ Methods
+-----------------------------+---------------------------------+----------------------------------+----------------------------------------------------+
| ``day_name`` | P | ``locale`` | |
+-----------------------------+---------------------------------+----------------------------------+----------------------------------------------------+
| ``mean`` | N | | |
| ``mean`` | Y | | |
+-----------------------------+---------------------------------+----------------------------------+----------------------------------------------------+
| ``std`` | N | | |
| ``std`` | P | ``ddof`` | |
+-----------------------------+---------------------------------+----------------------------------+----------------------------------------------------+
53 changes: 41 additions & 12 deletions src/snowflake/snowpark/modin/plugin/extensions/datetime_index.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,7 @@

from __future__ import annotations

from datetime import tzinfo
from datetime import timedelta, tzinfo

import modin
import numpy as np
Expand All @@ -43,6 +43,7 @@
)
from pandas.core.dtypes.common import is_datetime64_any_dtype

from snowflake.snowpark.modin.pandas import to_datetime, to_timedelta
from snowflake.snowpark.modin.plugin.compiler.snowflake_query_compiler import (
SnowflakeQueryCompiler,
)
Expand Down Expand Up @@ -1502,7 +1503,6 @@ def to_pydatetime(self) -> np.ndarray:
datetime.datetime(2018, 3, 1, 0, 0)], dtype=object)
"""

@datetime_index_not_implemented()
def mean(
self, *, skipna: bool = True, axis: AxisInt | None = 0
) -> native_pd.Timestamp:
Expand All @@ -1514,6 +1514,8 @@ def mean(
skipna : bool, default True
Whether to ignore any NaT elements.
axis : int, optional, default 0
The axis to calculate the mean over.
This parameter is ignored - 0 is the only valid axis.
Returns
-------
Expand All @@ -1533,20 +1535,26 @@ def mean(
>>> idx = pd.date_range('2001-01-01 00:00', periods=3)
>>> idx
DatetimeIndex(['2001-01-01', '2001-01-02', '2001-01-03'], dtype='datetime64[ns]', freq=None)
>>> idx.mean() # doctest: +SKIP
>>> idx.mean()
Timestamp('2001-01-02 00:00:00')
"""
# Need to convert timestamp to int value (nanoseconds) before aggregating.
# TODO: SNOW-1625233 When `tz` is supported, add a `tz` parameter to `to_datetime` for correct timezone result.
if axis not in [None, 0]:
raise ValueError(
f"axis={axis} is not supported, this parameter is ignored. 0 is the only valid axis."
)
return to_datetime(
self.to_series().astype("int64").agg("mean", axis=0, skipna=skipna)
)

@datetime_index_not_implemented()
def std(
self,
axis=None,
dtype=None,
out=None,
axis: AxisInt | None = None,
ddof: int = 1,
keepdims: bool = False,
skipna: bool = True,
):
**kwargs,
) -> timedelta:
"""
Return sample standard deviation over requested axis.
Expand All @@ -1555,11 +1563,12 @@ def std(
Parameters
----------
axis : int, optional
Axis for the function to be applied on. For :class:`pandas.Series`
this parameter is unused and defaults to ``None``.
The axis to calculate the standard deviation over.
This parameter is ignored - 0 is the only valid axis.
ddof : int, default 1
Degrees of Freedom. The divisor used in calculations is `N - ddof`,
where `N` represents the number of elements.
This parameter is not yet supported.
skipna : bool, default True
Exclude NA/null values. If an entire row/column is ``NA``, the result
will be ``NA``.
Expand All @@ -1581,6 +1590,26 @@ def std(
>>> idx = pd.date_range('2001-01-01 00:00', periods=3)
>>> idx
DatetimeIndex(['2001-01-01', '2001-01-02', '2001-01-03'], dtype='datetime64[ns]', freq=None)
>>> idx.std() # doctest: +SKIP
>>> idx.std()
Timedelta('1 days 00:00:00')
"""
if axis not in [None, 0]:
raise ValueError(
f"axis={axis} is not supported, this parameter is ignored. 0 is the only valid axis."
)
if ddof != 1:
raise NotImplementedError(
"`ddof` parameter is not yet supported for `std`."
)
# Snowflake cannot directly perform `std` on a timestamp; therefore, convert the timestamp to an integer.
# By default, the integer version of a timestamp is in nanoseconds. Directly performing computations with
# nanoseconds can lead to results with integer size much larger than the original integer size. Therefore,
# convert the nanoseconds to seconds and then compute the standard deviation.
# The timestamp is converted to seconds instead of the float version of nanoseconds since that can lead to
# floating point precision issues
return to_timedelta(
(self.to_series().astype(int) // 1_000_000_000).agg(
"std", axis=0, ddof=ddof, skipna=skipna, **kwargs
)
* 1_000_000_000
)
107 changes: 107 additions & 0 deletions tests/integ/modin/index/test_datetime_index_methods.py
Original file line number Diff line number Diff line change
Expand Up @@ -405,3 +405,110 @@ def test_floor_ceil_round_negative(func, freq, ambiguous, nonexistent):
getattr(snow_index, func)(
freq=freq, ambiguous=ambiguous, nonexistent=nonexistent
)


@pytest.mark.parametrize(
"native_index",
[
native_pd.date_range("2021-01-01", periods=5),
native_pd.date_range("2021-01-01", periods=5, freq="2D"),
pytest.param(
native_pd.DatetimeIndex(
[
"2014-04-04 23:56:01.000000001",
"2014-07-18 21:24:02.000000002",
"2015-11-22 22:14:03.000000003",
"2015-11-23 20:12:04.1234567890",
pd.NaT,
],
tz="US/Eastern",
),
marks=pytest.mark.xfail(
reason="TODO: SNOW-1625233 Snowpark pandas to_datetime does not support timezone"
),
),
native_pd.DatetimeIndex(
[
"2014-04-04 23:56",
pd.NaT,
"2014-07-18 21:24",
"2015-11-22 22:14",
pd.NaT,
]
),
],
)
@pytest.mark.parametrize("skipna", [True, False])
@sql_count_checker(query_count=1)
def test_datetime_index_mean(native_index, skipna):
snow_index = pd.DatetimeIndex(native_index)
native_res = native_index.mean(skipna=skipna)
snow_res = snow_index.mean(skipna=skipna)
if native_res is pd.NaT:
assert snow_res is pd.NaT
else:
assert snow_res == native_res


@pytest.mark.parametrize(
"native_index",
[
native_pd.date_range("2021-01-01", periods=5),
native_pd.date_range("2021-01-01", periods=5, freq="2D"),
# TODO: SNOW-1625233 Remove xfail when timezone is supported.
pytest.param(
native_pd.DatetimeIndex(
[
"2014-04-04 23:56:01.000000001",
"2014-07-18 21:24:02.000000002",
"2015-11-22 22:14:03.000000003",
"2015-11-23 20:12:04.1234567890",
pd.NaT,
],
tz="US/Eastern",
),
marks=pytest.mark.xfail(
reason="SNOW-1664175 Snowpark pandas `to_datetime` does not support tz"
),
),
native_pd.DatetimeIndex(
[
"2014-04-04 23:56",
pd.NaT,
"2014-07-18 21:24",
"2015-11-22 22:14",
pd.NaT,
]
),
],
)
@pytest.mark.parametrize("ddof", [1])
@pytest.mark.parametrize("skipna", [True, False])
@sql_count_checker(query_count=1)
def test_datetime_index_std(native_index, ddof, skipna):
snow_index = pd.DatetimeIndex(native_index)
native_res = native_index.std(ddof=ddof, skipna=skipna)
snow_res = snow_index.std(ddof=ddof, skipna=skipna)
# Since the Snowpark pandas implementation converts timestamp values to float values,
# there is some loss in accuracy. Hence, we use approx to compare the results.
pytest.approx(snow_res, native_res, nan_ok=True)


@pytest.mark.parametrize("ops", ["mean", "std"])
@sql_count_checker(query_count=0)
def test_datetime_index_agg_ops_axis_negative(ops):
snow_index = pd.DatetimeIndex(["2021-01-01", "2021-01-02", "2021-01-03"])
with pytest.raises(
ValueError,
match="axis=1 is not supported, this parameter is ignored. 0 is the only valid axis.",
):
getattr(snow_index, ops)(axis=1)


@sql_count_checker(query_count=0)
def test_datetime_index_std_ddof_negative():
snow_index = pd.DatetimeIndex(["2021-01-01", "2021-01-02", "2021-01-03"])
with pytest.raises(
NotImplementedError, match="`ddof` parameter is not yet supported for `std`."
):
snow_index.std(ddof=2)

0 comments on commit a07902c

Please sign in to comment.