Skip to content

Commit

Permalink
SNOW-1859608: Add missing docs for DataFrame.map
Browse files Browse the repository at this point in the history
  • Loading branch information
sfc-gh-helmeleegy committed Dec 17, 2024
1 parent 0362c46 commit 915c9e5
Show file tree
Hide file tree
Showing 2 changed files with 73 additions and 2 deletions.
3 changes: 2 additions & 1 deletion CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -24,7 +24,8 @@
- Added support for mixed case field names in struct type columns.

#### Improvements
- Improve performance of `DataFrame.map`, `Series.apply` and `Series.map` methods by mapping numpy functions to snowpark functions if possible.
- Improved performance of `DataFrame.map`, `Series.apply` and `Series.map` methods by mapping numpy functions to snowpark functions if possible.
- Added documentation for `DataFrame.map`.

## 1.26.0 (2024-12-05)

Expand Down
72 changes: 71 additions & 1 deletion src/snowflake/snowpark/modin/plugin/docstrings/dataframe.py
Original file line number Diff line number Diff line change
Expand Up @@ -4818,7 +4818,77 @@ def value_counts():

def map():
"""
Apply a function to the `DataFrame` elementwise.
Apply a function to a Dataframe elementwise.
Added in version 2.1.0: DataFrame.applymap was deprecated and renamed to DataFrame.map.
This method applies a function that accepts and returns a scalar to every element of a DataFrame.
Parameters
----------
func : callable
Python function, returns a single value from a single value.
na_action : {None, ‘ignore’}, default None
If ‘ignore’, propagate NaN values, without passing them to func.
**kwargs
Additional keyword arguments to pass as keywords arguments to func.
Returns
-------
DataFrame
Transformed DataFrame.
See also
--------
DataFrame.apply
Apply a function along input axis of DataFrame.
DataFrame.replace
Replace values given in to_replace with value.
Series.map
Apply a function elementwise on a Series.
Examples
--------
>>> df = pd.DataFrame([[1, 2.12], [3.356, 4.567]])
>>> df
0 1
0 1.000 2.120
1 3.356 4.567
>>> df.map(lambda x: len(str(x)))
0 1
0 3 4
1 5 5
Like Series.map, NA values can be ignored:
>>> df_copy = df.copy()
>>> df_copy.iloc[0, 0] = pd.NA
>>> df_copy.map(lambda x: len(str(x)), na_action='ignore')
0 1
0 NaN 4
1 5.0 5
It is also possible to use map with functions that are not lambda functions:
>>> df.map(round, ndigits=1)
0 1
0 1.0 2.1
1 3.4 4.6
Note that a vectorized version of func often exists, which will be much faster. You could square each number elementwise.
>>> df.map(lambda x: x**2)
0 1
0 1.000000 4.494400
1 11.262736 20.857489
But it’s better to avoid map in that case.
>>> df ** 2
0 1
0 1.000000 4.494400
1 11.262736 20.857489
"""

def mask():
Expand Down

0 comments on commit 915c9e5

Please sign in to comment.