Skip to content

通过研究社交网络,从网络中提取拓扑结构特征,运用机器学习方法进行链路预测,比较了几种机器学习算法的预测精度。

Notifications You must be signed in to change notification settings

snip2D/Link-Prediction-Based-on-ML

 
 

Repository files navigation

Link-Prediction-Based-on-ML

Link Prediction in social networks using computationally efficient topological features. 1.Vertex features out_friends,in_friends for directed network in_degree_density,out_degree_density,bi_degree_density 2.Edge features common_friends,total_friends,Jaccard's coefficient,transitive_friends,preferential_attachment_score,friends_measure opposite_direction_friends 3.Edge subgraph features nh_subgraph,inner_subgraph,edge_subgraph edges number 4.Path features shortest path

About

通过研究社交网络,从网络中提取拓扑结构特征,运用机器学习方法进行链路预测,比较了几种机器学习算法的预测精度。

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%