Skip to content

Commit

Permalink
[Core] Implement disagg prefill by StatelessProcessGroup (vllm-projec…
Browse files Browse the repository at this point in the history
…t#10502)

This PR provides initial support for single-node disaggregated prefill in 1P1D scenario.
Signed-off-by: KuntaiDu <[email protected]>
Co-authored-by: ApostaC <[email protected]>
Co-authored-by: YaoJiayi <[email protected]>
  • Loading branch information
KuntaiDu authored and weilong.yu committed Dec 13, 2024
1 parent 793d4d7 commit 3fac6de
Show file tree
Hide file tree
Showing 33 changed files with 2,525 additions and 21 deletions.
4 changes: 4 additions & 0 deletions .buildkite/test-pipeline.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -430,6 +430,9 @@ steps:
- vllm/model_executor/models/
- tests/distributed/
- vllm/compilation
- vllm/worker/worker_base.py
- vllm/worker/worker.py
- vllm/worker/model_runner.py
commands:
- pytest -v -s ./compile/test_basic_correctness.py
- pytest -v -s ./compile/test_wrapper.py
Expand All @@ -443,6 +446,7 @@ steps:
- pip install -e ./plugins/vllm_add_dummy_model
- pytest -v -s distributed/test_distributed_oot.py
- CUDA_VISIBLE_DEVICES=0,1 pytest -v -s test_sharded_state_loader.py
- CUDA_VISIBLE_DEVICES=0,1 pytest -v -s kv_transfer/disagg_test.py

- label: Multi-step Tests (4 GPUs) # 36min
working_dir: "/vllm-workspace/tests"
Expand Down
144 changes: 144 additions & 0 deletions benchmarks/disagg_benchmarks/disagg_overhead_benchmark.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,144 @@
#!/bin/bash

# benchmark the overhead of disaggregated prefill.
# methodology:
# - send all request to prefill vLLM instance. It will buffer KV cache.
# - then send all request to decode instance.
# - The TTFT of decode instance is the overhead.

set -ex

kill_gpu_processes() {
# kill all processes on GPU.
pkill -f pt_main_thread
sleep 10

# remove vllm config file
rm -rf ~/.config/vllm

# Print the GPU memory usage
# so that we know if all GPU processes are killed.
gpu_memory_usage=$(nvidia-smi --query-gpu=memory.used --format=csv,noheader,nounits -i 0)
# The memory usage should be 0 MB.
echo "GPU 0 Memory Usage: $gpu_memory_usage MB"
}

wait_for_server() {
# wait for vllm server to start
# return 1 if vllm server crashes
local port=$1
timeout 1200 bash -c "
until curl -s localhost:${port}/v1/completions > /dev/null; do
sleep 1
done" && return 0 || return 1
}


benchmark() {

export VLLM_LOGGING_LEVEL=DEBUG
export VLLM_HOST_IP=$(hostname -I | awk '{print $1}')

# compare chunked prefill with disaggregated prefill

results_folder="./results"
model="meta-llama/Meta-Llama-3.1-8B-Instruct"
dataset_name="sonnet"
dataset_path="../sonnet_4x.txt"
num_prompts=10
qps=$1
prefix_len=50
input_len=2048
output_len=$2


CUDA_VISIBLE_DEVICES=0 python3 \
-m vllm.entrypoints.openai.api_server \
--model meta-llama/Meta-Llama-3.1-8B-Instruct \
--port 8100 \
--max-model-len 10000 \
--gpu-memory-utilization 0.6 \
--kv-transfer-config \
'{"kv_connector":"PyNcclConnector","kv_role":"kv_producer","kv_rank":0,"kv_parallel_size":2,"kv_buffer_size":5e9}' &


CUDA_VISIBLE_DEVICES=1 python3 \
-m vllm.entrypoints.openai.api_server \
--model meta-llama/Meta-Llama-3.1-8B-Instruct \
--port 8200 \
--max-model-len 10000 \
--gpu-memory-utilization 0.6 \
--kv-transfer-config \
'{"kv_connector":"PyNcclConnector","kv_role":"kv_consumer","kv_rank":1,"kv_parallel_size":2,"kv_buffer_size":5e9}' &

wait_for_server 8100
wait_for_server 8200

# let the prefill instance finish prefill
python3 ../benchmark_serving.py \
--backend vllm \
--model $model \
--dataset-name $dataset_name \
--dataset-path $dataset_path \
--sonnet-input-len $input_len \
--sonnet-output-len "$output_len" \
--sonnet-prefix-len $prefix_len \
--num-prompts $num_prompts \
--port 8100 \
--save-result \
--result-dir $results_folder \
--result-filename disagg_prefill_2xtp4.json \
--request-rate "inf"


# send the request to decode.
# The TTFT of this command will be the overhead of disagg prefill impl.
python3 ../benchmark_serving.py \
--backend vllm \
--model $model \
--dataset-name $dataset_name \
--dataset-path $dataset_path \
--sonnet-input-len $input_len \
--sonnet-output-len "$output_len" \
--sonnet-prefix-len $prefix_len \
--num-prompts $num_prompts \
--port 8200 \
--save-result \
--result-dir $results_folder \
--result-filename disagg_prefill_2xtp4.json \
--request-rate "$qps"
kill_gpu_processes

}


main() {

(which wget && which curl) || (apt-get update && apt-get install -y wget curl)
(which jq) || (apt-get -y install jq)
(which socat) || (apt-get -y install socat)

pip install quart httpx

cd "$(dirname "$0")"

cd ..
# create sonnet-4x.txt
echo "" > sonnet_4x.txt
for _ in {1..4}
do
cat sonnet.txt >> sonnet_4x.txt
done
cd disagg_benchmarks

rm -rf results
mkdir results

default_qps=1
default_output_len=1
benchmark $default_qps $default_output_len

}


main "$@"
164 changes: 164 additions & 0 deletions benchmarks/disagg_benchmarks/disagg_performance_benchmark.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,164 @@
#!/bin/bash

# Requirement: 8x H100 GPUs.


# Model: neuralmagic/Meta-Llama-3-70B-Instruct-FP8-KV
# Query: 2048 input tokens, 11 output tokens, QPS 4, 500 requests
# Resource: 8x H100
# Approaches:
# 1. Chunked prefill: 1 vllm instance with tp=8
# 2. Chunked prefill: 2 vllm instance with tp=4, equivalent to 1 tp=4 instance with QPS 4
# 3. Disaggregated prefill: 1 prefilling instance and 1 decoding instance
# Prefilling instance: max_output_token=1
# Decoding instance: force the input tokens be the same across requests to bypass prefilling

set -ex

kill_gpu_processes() {
# kill all processes on GPU.
pgrep pt_main_thread | xargs -r kill -9
pgrep python3 | xargs -r kill -9
for port in 8000 8100 8200; do lsof -t -i:$port | xargs -r kill -9; done
sleep 1
}

wait_for_server() {
# wait for vllm server to start
# return 1 if vllm server crashes
local port=$1
timeout 1200 bash -c "
until curl -s localhost:${port}/v1/completions > /dev/null; do
sleep 1
done" && return 0 || return 1
}


launch_chunked_prefill() {
model="meta-llama/Meta-Llama-3.1-8B-Instruct"
# disagg prefill
CUDA_VISIBLE_DEVICES=0 python3 \
-m vllm.entrypoints.openai.api_server \
--model $model \
--port 8100 \
--max-model-len 10000 \
--enable-chunked-prefill \
--gpu-memory-utilization 0.6 &
CUDA_VISIBLE_DEVICES=1 python3 \
-m vllm.entrypoints.openai.api_server \
--model $model \
--port 8200 \
--max-model-len 10000 \
--enable-chunked-prefill \
--gpu-memory-utilization 0.6 &
wait_for_server 8100
wait_for_server 8200
python3 round_robin_proxy.py &
sleep 1
}


launch_disagg_prefill() {
model="meta-llama/Meta-Llama-3.1-8B-Instruct"
# disagg prefill
CUDA_VISIBLE_DEVICES=0 python3 \
-m vllm.entrypoints.openai.api_server \
--model $model \
--port 8100 \
--max-model-len 10000 \
--gpu-memory-utilization 0.6 \
--kv-transfer-config \
'{"kv_connector":"PyNcclConnector","kv_role":"kv_producer","kv_rank":0,"kv_parallel_size":2,"kv_buffer_size":5e9}' &

CUDA_VISIBLE_DEVICES=1 python3 \
-m vllm.entrypoints.openai.api_server \
--model $model \
--port 8200 \
--max-model-len 10000 \
--gpu-memory-utilization 0.6 \
--kv-transfer-config \
'{"kv_connector":"PyNcclConnector","kv_role":"kv_consumer","kv_rank":1,"kv_parallel_size":2,"kv_buffer_size":5e9}' &

wait_for_server 8100
wait_for_server 8200
python3 disagg_prefill_proxy_server.py &
sleep 1
}


benchmark() {
results_folder="./results"
model="meta-llama/Meta-Llama-3.1-8B-Instruct"
dataset_name="sonnet"
dataset_path="../sonnet_4x.txt"
num_prompts=100
qps=$1
prefix_len=50
input_len=1024
output_len=$2
tag=$3

python3 ../benchmark_serving.py \
--backend vllm \
--model $model \
--dataset-name $dataset_name \
--dataset-path $dataset_path \
--sonnet-input-len $input_len \
--sonnet-output-len "$output_len" \
--sonnet-prefix-len $prefix_len \
--num-prompts $num_prompts \
--port 8000 \
--save-result \
--result-dir $results_folder \
--result-filename "$tag"-qps-"$qps".json \
--request-rate "$qps"

sleep 2

}


main() {

(which wget && which curl) || (apt-get update && apt-get install -y wget curl)
(which jq) || (apt-get -y install jq)
(which socat) || (apt-get -y install socat)

pip install quart httpx matplotlib aiohttp

cd "$(dirname "$0")"

cd ..
# create sonnet-4x.txt so that we can sample 2048 tokens for input
echo "" > sonnet_4x.txt
for _ in {1..4}
do
cat sonnet.txt >> sonnet_4x.txt
done
cd disagg_benchmarks

rm -rf results
mkdir results

default_output_len=6

export VLLM_HOST_IP=$(hostname -I | awk '{print $1}')

launch_chunked_prefill
for qps in 2 4 6 8; do
benchmark $qps $default_output_len chunked_prefill
done
kill_gpu_processes

launch_disagg_prefill
for qps in 2 4 6 8; do
benchmark $qps $default_output_len disagg_prefill
done
kill_gpu_processes

python3 visualize_benchmark_results.py

}


main "$@"
61 changes: 61 additions & 0 deletions benchmarks/disagg_benchmarks/disagg_prefill_proxy_server.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,61 @@
import os

import aiohttp
from quart import Quart, make_response, request

AIOHTTP_TIMEOUT = aiohttp.ClientTimeout(total=6 * 60 * 60)

app = Quart(__name__)


async def forward_request(url, data):
async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
headers = {
"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}"
}
async with session.post(url=url, json=data,
headers=headers) as response:
if response.status == 200:
# if response.headers.get('Transfer-Encoding') == 'chunked':
if True:
async for chunk_bytes in response.content.iter_chunked(
1024):
yield chunk_bytes
else:
content = await response.read()
yield content


@app.route('/v1/completions', methods=['POST'])
async def handle_request():
try:
original_request_data = await request.get_json()

prefill_request = original_request_data.copy()
# change max_tokens = 1 to let it only do prefill
prefill_request['max_tokens'] = 1

# finish prefill
async for _ in forward_request('http://localhost:8100/v1/completions',
prefill_request):
continue

# return decode
generator = forward_request('http://localhost:8200/v1/completions',
original_request_data)
response = await make_response(generator)
response.timeout = None

return response

except Exception as e:
import sys
import traceback
exc_info = sys.exc_info()
print("Error occurred in disagg prefill proxy server")
print(e)
print("".join(traceback.format_exception(*exc_info)))


if __name__ == '__main__':
app.run(port=8000)
Loading

0 comments on commit 3fac6de

Please sign in to comment.