This is a meta repository (so-called "superbuild") that uses CMake and YCM to automatically download and compile software developed in the robotology GitHub organization, such as the YARP middleware or software used to run the iCub humanoid robot.
CMake is an open-source, cross-platform family of tools designed to build, test and package software.
A YCM Superbuild is a CMake project whose only goal is to download and build several other projects.
If you are familiar with ROS, it is something similar to catkin or colcon workspace, but using pure CMake for portability reasons and for customizing the build via CMake options. Furthermore, the robotology-superbuild
also contains some infrastructure to build binaries of the contained projects for some platforms.
You can read more about the superbuild concept in YCM documentation or in the related IRC paper.
System | Continuous Integration Status |
---|---|
Linux/macOS/Windows |
The robotology-superbuild
is an infrastructure to simplify development and use of open source research software developed at the Italian Institute of Technology, in particular as part of the iCub project.
As a huge number of software projects are contained in the robotology-superbuild
, and a tipical user is only interested in some of them, there are several options to instruct the superbuild on which packages should be built and which one should not be built. In particular, the robotology-superbuild is divided in different profiles, that specify the specific subset of robotology packages to build. You can read more on the available profiles and how to enable them in the doc/cmake-options.md#profile-specific-documentation
.
Furthermore, some dependencies of software contained in the robotology-superbuild
are either tricky to install or proprietary, and for this reason software that depends on those optional dependencies can be enabled or disabled with specific options,as documented in doc/cmake-options.md#dependencies-specific-documentation
.
For what regards versioning, software in the robotology-superbuild can be consumed in two forms:
In this form, the superbuild will get the latest changes for a branch of each subproject, and will build it. This has the advantage that you get all the latest changes from the software contained in the robotology-superbuild
, while the downside that the specific software that you use may change at each update. The rolling update can be used only when building robotology-superbuild software from source. By default, the robotology-superbuild
uses the latest "stable" branches of the robotology repositories, but in some cases it may be necessary to use the "unstable" active development branches. For this advanced functionalities, please refer to the documentation on changing the default project tags, available at doc/change-project-tags.md
.
Once every three months, a set of releases of the software in the robotology-superbuild is freezed and used as a "Distro Release", following the policies of iCub software described in https://icub-tech-iit.github.io/documentation/sw_versioning_table/ . Releases can be used both when building the software from source, and when obtaining it from binaries.
The available releases can be seen on GitHub's release page.
The only platform on which we currently provide binary installation of the software contained in the robotology-superbuild is Windows. For all other platforms, please refer to the instructions on how to install the robotology-superbuild from source code.
Any release of robotology-superbuild comes with Windows binaries, that can be downloaded from the GitHub's release page of that release.
Each release contains two installers:
robotology-dependencies-installer-win64.exe
that installs a custom vcpkg installation inC:/robotology/vcpkg
for compile from source the robotology softwarerobotology-full-installer-win64.exe
that also installs the software built by the robotology-superbuild inC:/robotology/robotology
.
In both cases, the installer offer an options to create and append all the necessary user environment variables to use the C++ libraries and the binaries without any further configuration. Note that you may want to opt out from this if in your system you also use other kind of C++ libraries system to avoid conflicts, and instead manually invoke the following scripts to setup the environments as necessary:
C:/robotology/scripts/setup.bat
: Batch script to set the environment variables in a Command Prompt terminal.C:/robotology/scripts/setup.sh
: Bash script to set the environment variables in a Git for Windows bash terminal, that can be included in the.bash_profile
.C:/robotology/scripts/addPathsToUserEnvVariables.ps1
: Powershell scripts to permanently add or remove the environment variables in the User Environment Variables. This is the script that is executed by the installer when the option "Update Environment Variables" is selected. The environment can be cleaned by any environment variable added byaddPathsToUserEnvVariables.ps1
by executing the scriptremovePathsToUserEnvVariables.ps1
.
Furthermore, if you do not have Visual Studio 2019 installed on your machine, the installer requires the Microsoft Visual C++ Redistributable for Visual Studio 2015, 2017 and 2019 to be installed on your machine, that can be downloaded at https://support.microsoft.com/en-us/help/2977003/the-latest-supported-visual-c-downloads, in particular you need to install the file https://aka.ms/vs/16/release/vc_redist.x64.exe .
The first step to install robotology-superbuild
from source is to download the robotology-superbuild
code itself, and this is done through Git.
Once you install Git, you need to set your name and email to sign your commits, as this is required by the superbuild:
git config --global user.name FirstName LastName
git config --global user.email [email protected]
Once git is configured, you can open a command line terminal. If you want to use the robotology-superbuild
in rolling update mode, just clone the superbuild:
git clone https://github.com/robotology/robotology-superbuild
this will clone the superbuild in its default branch.
You can download and use the robotology-superbuild
anywhere on your system, but if you are installing it
on an iCub robot laptop following the official iCub instructions, you should clone it in the /usr/local/src/robot
directory.
If instead you want to use a specific release of the robotology superbuild, after you clone switch to use to a specific release tag:
git checkout v<YYYY.MM>
For the list of actually available tags, see the GitHub's releases page.
Once you cloned the repo, to go forward you can follow the different instructions on how to install robotology-superbuild from the source code, depending on your operating system:
- Linux: use the superbuild with make,
- macOS: use the superbuild with Xcode or GNU make,
- Windows: use the superbuild with Microsoft Visual Studio,
- Windows Subsystem For Linux: use the superbuild with make on Windows Subsystem for Linux.
The exact versions of the operating systems supported by the robotology-superbuild follow the one supported by the YARP library, that are documented in https://github.com/robotology/yarp/blob/master/.github/CONTRIBUTING.md#supported-systems . Complete documentation on how to use a YCM-based superbuild is available in the YCM documentation.
When compiled from source, robotology-superbuild
will download and build a number of software.
For each project, the repository will be downloaded in the src/<package_name>
subdirectory of the superbuild root.
The build directory for a given project will be instead the src/<package_name>
subdirectory of the superbuild build directory.
All the software packages are installed using the install
directory of the build as installation prefix.s
On Debian based systems (as Ubuntu) you can install the C++ toolchain, Git, CMake and Eigen (and other dependencies necessary for the software include in robotology-superbuild
) using apt-get
:
sudo apt-get install bash-completion build-essential cmake cmake-curses-gui coinor-libipopt-dev freeglut3-dev git libace-dev libboost-filesystem-dev libboost-system-dev libboost-thread-dev libdc1394-22-dev libedit-dev libeigen3-dev libgsl0-dev libjpeg-dev liblua5.1-dev libode-dev libopencv-dev libsdl1.2-dev libtinyxml-dev libv4l-dev libxml2-dev lua5.1 portaudio19-dev qml-module-qt-labs-folderlistmodel qml-module-qt-labs-settings qml-module-qtmultimedia qml-module-qtquick-controls qml-module-qtquick-dialogs qml-module-qtquick-window2 qml-module-qtquick2 qtbase5-dev qtdeclarative5-dev qtmultimedia5-dev swig libmatio-dev libirrlicht-dev libspdlog-dev libblas-dev liblapack-dev
If you are not using Ubuntu 18.04, you also need to install:
sudo apt-get install nlohmann-json3-dev
For what regards CMake, the robotology-superbuild requires CMake 3.16 . If you are using a recent Debian-based system such as Ubuntu 20.04, the default CMake is recent enough and you do not need to do further steps.
If instead you use an older distro in which the default version of CMake is older, you can easily install a newer CMake version in several ways. For the following distributions, we recommend the following methods:
- Ubuntu 18.04 : use the latest CMake release in the Kitware APT repository. You can find the full instructions for the installation on the website.
- Debian 10 : use the CMake in the
buster-backports
repository, following the instructions to install from backports available in Debian documentation. More details can be found at robotology/community#364 .
If you enabled any profile or dependency specific CMake option you may need to install additional system dependencies, following the dependency-specific documentation (in particular, the ROBOTOLOGY_USES_GAZEBO
option is enabled by default, so you should install Gazebo unless you plan to disable this option):
Finally it is possible to install robotology software using the YCM superbuild:
cd robotology-superbuild
mkdir build
cd build
ccmake ../
make
You can configure the ccmake environment if you know you will use some particular set of software (put them in "ON"). See Superbuild CMake options for a list of available options.
The superbuild provides an automatically generated setup.sh
sh script that will set all the necessary enviromental variables to use the software installed in the robotology-superbuild. To do so automatically for any new terminal that you open, append the following line to the .bashrc
file:
source <directory-where-you-downloaded-robotology-superbuild>/build/install/share/robotology-superbuild/setup.sh
To use the updated .bashrc
in your terminal you should run the following command:
user@host:~$ source ~/.bashrc
If may also be necessary to updates the cache of the dynamic linker:
user@host:~$ sudo ldconfig
If for any reason you do not want to use the provided setup.sh
script and you want to manage your enviroment variables manually, please refer to the documentation available at doc/environment-variables-configuration.md
.
To install the system dependencies, it is possible to use Homebrew:
brew install ace bash-completion boost cmake eigen gsl ipopt jpeg libedit nlohmann-json opencv pkg-config portaudio qt@5 sqlite swig tinyxml libmatio irrlicht spdlog
Since Qt5 is not symlinked in /usr/local
by default in the homebrew formula, Qt5_DIR
needs to be properly set to make sure that CMake-based projects are able to find Qt5.
export Qt5_DIR=/usr/local/opt/qt5/lib/cmake/Qt5
If you want to enable a profile or a dependency specific CMake option, you may need to install additional system dependencies following the dependency-specific documentation (in particular, the ROBOTOLOGY_USES_GAZEBO
option is enabled by default, so you should install Gazebo unless you plan to disable this option):
cd robotology-superbuild
mkdir build
cd build
To use GNU Makefile generators:
cmake ../
make
To use Xcode project generators
cmake ../ -G Xcode
xcodebuild [-configuration Release|Debug] [-jobs <n>] [-list | -target <target_name>]
-list
gives the list of available targets.
Note: as of late 2020, the Xcode 12 generator is not supported, for more info see robotology/ycm-cmake-modules#368. All previous versions instead should work fine. If you have Xcode 12 installed in your macOS system, please use the GNU Makefiles generator.
The superbuild provides an automatically generated setup.sh
sh script that will set all the necessary enviromental variables to use the software installed in the robotology-superbuild. To do so automatically for any new terminal that you open, append the following line to the .bash_profile
file:
source <directory-where-you-downloaded-robotology-superbuild>/build/install/share/robotology-superbuild/setup.sh
To use the updated .bash_profile
in your terminal you should run the following command:
user@host:~$ source ~/.bash_profile
or simply open a new terminal.
If for any reason you do not want to use the provided setup.sh
script and you want to manage your enviroment variables manually, please refer to the documentation available at doc/environment-variables-configuration.md
.
As Windows does not have a widely used system package manager such as the one that are available on Linux or macOS, installing the system dependencies is slightly more complicated. However, we try to document every step necessary for the installation, but if you find something that you don't understand in the documentation, please open an issue.
Most of the robotology software is developed using the C/C++ language. For this reason, you should have Visual Studio, the official Microsoft compiler for Windows, installed on your computer to compile the software in the superbuild. Only Visual Studio 2019 targeting the 64 bit platform is currently supported by the robotology-superbuild. Pay attention to enable the C++ support (https://docs.microsoft.com/en-us/cpp/build/vscpp-step-0-installation) when first installing the Visual Studio compiler, as by default C++ support is not installed.
Most of the robotology software is hosted on Git repositories, so you will need Git to download them. You can download the Git installer at http://msysgit.github.io/ .
To install CMake you can use the official installer available at http://www.cmake.org/cmake/resources/software.html . It is recommended to install the latest version of CMake.
While this tool is not strictly required, it is convenient to install the Rapid Environment Editor to easily modify the value of the environment variables in Windows.
The software in the superbuild depends on several C++ libraries: to install the required dependencies on your machine, we suggest to use vcpkg
, the C++ library manager mantained by Microsoft. As vcpkg
compiles from sources all its libraries, this can be quite time intensive for some libraries such as qt5
or opencv
.
For this reason, we provide a ready to use vcpkg
workspace at https://github.com/robotology/robotology-superbuild-dependencies-vcpkg/releases, that you can download and unzip in C:/
and use directly from there, for example executing the following commands from the Git Bash shell:
cd C:/
wget https://github.com/robotology/robotology-superbuild-dependencies-vcpkg/releases/latest/download/vcpkg-robotology.zip
unzip vcpkg-robotology.zip -d C:/
rm vcpkg-robotology.zip
or creating the directories and extracting the archive through the File Explorer. If you prefer to use your own vcpkg to install the dependencies of the superbuild, please refer to the documentation available at doc/vcpkg-dependencies.md
.
If you want to enable the ROBOTOLOGY_USES_GAZEBO
option, you will need to download and extract the vcpkg-robotology-with-gazebo.zip
archive. For instructions on how to correctly use this archives, please refer to documentation of the robotology-superbuild-dependencies-vcpkg
repo.
If you want to enable a profile or a dependency specific CMake option, you may need to install additional system dependencies following the dependency-specific documentation:
ROBOTOLOGY_USES_OCULUS_SDK
ROBOTOLOGY_USES_CYBERITH_SDK
ROBOTOLOGY_USES_XSENS_MVN_SDK
ROBOTOLOGY_USES_ESDCAN
Once you cloned the repository, you can generate the Visual Studio solution using the CMake GUI, by using as a generator the appropriate Visual Studio version, and the 64 bit as platform, and specifying the vcpkg CMake toolchain as discussed in the previous section. In particular, see the nicely written CGold documentation if you do not know how to generate a Visual Studio solution from a CMake project.
You can then open the generated solution with Visual Studio and build the target all
.
Visual Studio will then download, build and install in a local directory all the robotology software and its dependencies.
If you prefer to work from the command line, you can also compile the all
target using the following command (if you are in the robotology-superbuild/build
directory, and the directory of the cmake.exe
exectuable is in the PATH :
cmake --build . --config Release
If you are an heavy user of the software installed by the robotology-superbuild, you may want to update your user enviroment variables to permit you to use the robotology-superbuild software from any Windows process. To automatically update the user enviroment variables, the robotology-superbuild provides the addPathsToUserEnvVariables.ps1
and removePathsFromUserEnvVariables.ps1
available at <directory-where-you-downloaded-robotology-superbuild>/build/install/share/robotology-superbuild/
. As indicated by their name, addPathsToUserEnvVariables.ps1
is used to setup the enviroment variables used by the robotology-superbuild, while removePathsFromUserEnvVariables.ps1
permits to cleanly remove them. To configure the robotology-superbuild, just run the addPathsToUserEnvVariables.ps1
script once in a Powershell terminal.
To check the values of the enviroment variables modified by the powershell scripts provided by the superbuild, you can use a program such as Rapid Enviroment Editor.
If you do not want to modify the user enviroment variables permanently, the superbuild provides an automatically generated setup.bat
batch script in <directory-where-you-downloaded-robotology-superbuild>/build/install/share/robotology-superbuild/setup.bat
. This script will set
all the necessary enviromental variables to use the software installed by the robotology-superbuild. However, as in Windows there is no .bashrc
file-equivalent, you will need to call this script every time you open a batch terminal in which you want to run the software installed by the robotology-superbuild.
Another option if you do not want to to modify the user enviroment variables permanently and you use the Git Bash as your main terminal,
is to use the automatically generated setup.sh
script, available in <directory-where-you-downloaded-robotology-superbuild>/build/install/share/robotology-superbuild/setup.sh
.
You can source automatically this script for any new Git Bash instance by creating a .bash_profile
file in your C:/Users/<UserName>
directory, and by adding in it the file:
source <directory-where-you-downloaded-robotology-superbuild>/build/install/share/robotology-superbuild/setup.sh
If for any reason you do not want to use the provided scripts and you want to manage your enviroment variables manually, for example because you want to cleanup the enviroment variables modified by addPathsToUserEnvVariables.ps1
and you delete the corresponding removePathsFromUserEnvVariables.ps1
, please refer to the documentation available at doc/environment-variables-configuration.md
.
If you have problems in Windows in launching executables or using libraries installed by superbuild, it is possible that due to some existing software on your machine your executables are not loading the correct dll
for some of the dependencies. This is the so-called DLL Hell, and for example it can happen if you are using the Anaconda Python distribution on your Windows installation. To troubleshoot this kind of problems, you can open the library or executable that is not working correctly using the Dependencies
software. This software will show you which DLL your executable or library is loading. If you have any issue of this kind and need help, feel free to open an issue in our issue tracker.
The Windows Subsystem for Linux (wsl) lets developers run a GNU/Linux environment -- including most command-line tools, utilities, and applications -- directly on Windows, unmodified.
As all the software running on Linux distributions can run unmodified on Windows via WSL, to install the robotology-superbuild in WSL you can just install a Debian-based distribution for WSL, and then follow the instructions on how to install the robotology-superbuild on Linux. As the WSL enviroment is nevertheless different, there are a few things you need to care before using the robotology-superbuild on WSL, that are listed in the following, depending on whetever you are using WSL2 or WSL1.
The Linux instance in WSL2 are running as part of a lightweight virtual machine, so effectively the IP address of the WSL2 instance will be different from the IP address
of the Windows host, and the Windows host can communicate with the WSL2 instance thanks to a virtual IP network. For this reason, to run graphical applications on WSL2, you
first need to install an X Server for Windows. Furthermore, you will need to configure your application to connect to the X Server that is running on the Windows host, you can do
so by adding the following lines in the ~/.bashrc
file of the WSL2 instance:
export WINDOWS_HOST=$(grep nameserver /etc/resolv.conf | awk '{print $2}')
export DISPLAY=${WINDOWS_HOST}:0.0
As unfortunately the IP addresses of the virtual IP network change at every reboot, it is also necessary to configure the X Server that you use to accept connection for arbitrary IP addresses. Check doc/wsl2-xserver-configuration.md
for instructions on how to do so on several X Servers.
By default, the PATH
enviroment variable in WSL will contain the path of the host Windows system, see microsoft/WSL#1640 and microsoft/WSL#1493. This can create problems,
as the CMake in WSL may find (incompatible) Windows CMake packages and try to use them, creating errors due to the compilation.
To avoid that, you can create in your WSL2 instance the /etc/wsl.conf
file, and then populate it with the following content:
[interop]
appendWindowsPath = false
Note that you will need to restart your machine to make sure that this setting is taked into account.
If you want your YARP applications on WSL2 to connect to a yarpserver
that you launched on the Windows host, you need to add the following line to your WSL's ~/.bashrc
:
yarp conf ${WINDOWS_HOST} 10000 > /dev/null 2>&1
where WINDOWS_HOST
needs to be defined as in "Run graphical applications on WSL2" section.
With respect to WSL2, WSL1 uses the same IP address used by the Windows machine, so the amount of configuration and tweaks required are less.
To run graphical applications on WSL, you need to install a X Server for Windows, that will be able to visualize the windows WSL-based applications, see https://www.howtogeek.com/261575/how-to-run-graphical-linux-desktop-applications-from-windows-10s-bash-shell/ for more info. For information of X Servers that can be installed on Windows, follow the docs in https://github.com/sirredbeard/Awesome-WSL#10-gui-apps .
By default, the PATH
enviroment variable in WSL will contain the path of the host Windows system, see microsoft/WSL#1640 and microsoft/WSL#1493. This can create problems,
as the CMake in WSL may find (incompatible) Windows CMake packages and try to use them, creating errors due to the compilation.
To avoid that, you can add the following line in the WSL .bashrc
that filters all the Windows paths from the WSL's enviromental variables:
for var in $(env | awk {'FS="="} /\/mnt\//{print $1}'); do export ${var}=\"$(echo ${!var} | awk -v RS=: -v ORS=: '/\/mnt\// {next} {print $1}')\" ; done
If you are using the robotology-superbuild
in its default branch and not from a release tag (i.e. in rolling update mode), to update the superbuild you need to first update the
robotology-superbuild
repository itself with the git command:
git pull
After that, you will need to also run the equivalent of git pull
on all the repositories managed by
the robotology-superbuild, you have to run in your build system the appropriate target.
To do this, make sure to be in the build
directory of the robotology-superbuild
and run:
make update-all
make
using make on Linux or macOS or
cmake --build . --target ALL_UPDATE
cmake --build .
using Visual Studio on Windows or
cmake --build . --target ALL_UPDATE
cmake --build .
using Xcode on macOS.
Note that the update will try to update all the software in the robotology-superbuild
, and it will complain if the repository is not in the expected branch.
For this reason, if you are activly developing on a repository managed by the robotology-superbuild
, remember to switch the YCM_EP_DEVEL_MODE_<package_name>
option to TRUE
. This option will ensure that the superbuild will not try to automatically update the <package_name>
repository. See https://robotology.github.io/ycm/gh-pages/git-master/manual/ycm-superbuild.7.html#developer-mode
for more details on this options.
By default, the robotology-superbuild
uses the latest "stable" branches of the robotology repositories, but in some cases it may be necessary to use the "unstable" active development branches, or use some fixed tags. For this advanced functionalities, please refer to the documentation on changing the default project tags, available at doc/change-project-tags.md
.
See also YCM documentation for YCM's FAQs.
For questions related to how to modify the rootology-superbuild itself, such as how to add a new package, how to do a release, check
the Developers' FAQs document at doc/developers-faqs.md
.
When configuration the robotology-superbuild, you can pass the YCM_EP_ADDITIONAL_CMAKE_ARGS
CMake option:
cmake -DYCM_EP_ADDITIONAL_CMAKE_ARGS:STRING="-DENABLE_yarpmod_SDLJoypad:BOOL=ON"
This option can be used to specify parameters that are passed to all CMake projects of the superbuild (as it is useful for some options, for example -DBUILD_TESTING:BOOL=ON
).
This option can be used also for CMake options that are related to a single project, as all the other projects will ignore the option.
For more information on this option, see the official YCM documentation.
It is possible to run the bash script named robotologyGitStatus.sh
in the scripts
folder. For example, on linux, from the robotology-superbuild
root run bash scripts/robotologyGitStatus.sh
to print the status of each subproject.
This script can run from any directory, provided that the path to the robotologyGitStatus.sh
script is given to bash
.
The robotology-superbuild
is based on YCM, you can cite one of these papers:
-
A Build System for Software Development in Robotic Academic Collaborative Environments, D.E. Domenichelli, S. Traversaro, L. Muratore, A. Rocchi, F. Nori, L. Natale, Second IEEE International Conference on Robotic Computing (IRC), 2018, https://doi.org/10.1109/IRC.2018.00014
-
A Build System for Software Development in Robotic Academic Collaborative Environments, D.E. Domenichelli, S. Traversaro, L. Muratore, A. Rocchi, F. Nori, L. Natale, International Journal of Semantic Computing (IJSC), Vol. 13, No. 02, 2019
Profile | Maintainer |
---|---|
Core, Dynamics, iCub Head, iCub Basic Demos | Silvio Traversaro @traversaro |
Teleoperation | Kourosh Darvish @kouroshD |
Human Dynamics | Yeshasvi Tirupachuri @Yeshasvitvs |
Event-driven | Arren Glover @arrenglover |
Dynamics full deps | Giulio Romualdi @GiulioRomualdi |