Skip to content

simonw/ttok

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

16 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ttok

PyPI Changelog Tests License

Count and truncate text based on tokens

Background

Large language models such as GPT-3.5 and GPT-4 work in terms of tokens.

This tool can count tokens, using OpenAI's tiktoken library.

It can also truncate text to a specified number of tokens.

See llm, ttok and strip-tags—CLI tools for working with ChatGPT and other LLMs for more on this project.

Installation

Install this tool using pip:

pip install ttok

Or using Homebrew:

brew install simonw/llm/ttok

Counting tokens

Provide text as arguments to this tool to count tokens:

ttok Hello world
2

You can also pipe text into the tool:

echo -n "Hello world" | ttok
2

Here the echo -n option prevents echo from adding a newline - without that you would get a token count of 3.

To pipe in text and then append extra tokens from arguments, use the -i - option:

echo -n "Hello world" | ttok more text -i -
6

Different models

By default, the tokenizer model for GPT-3.5 and GPT-4 is used.

To use the model for GPT-2 and GPT-3, add --model gpt2:

ttok boo Hello there this is -m gpt2
6

Compared to GPT-3.5:

ttok boo Hello there this is
5

Further model options are documented here.

Truncating text

Use the -t 10 or --truncate 10 option to truncate text to a specified number of tokens:

ttok This is too many tokens -t 3
This is too

Viewing tokens

The --encode option can be used to view the integer token IDs for the incoming text:

ttok Hello world --encode
9906 1917

The --decode method reverses this process:

ttok 9906 1917 --decode
Hello world

Add --tokens to either of these options to see a detailed breakdown of the tokens:

ttok Hello world --encode --tokens
[b'Hello', b' world']

Available models

This is the full list of available models and their corresponding encodings. Model names and encoding names are valid for the -m/--model option.

  • gpt-4 (cl100k_base)
  • gpt-3.5-turbo (cl100k_base)
  • gpt-3.5 (cl100k_base)
  • gpt-35-turbo (cl100k_base)
  • davinci-002 (cl100k_base)
  • babbage-002 (cl100k_base)
  • text-embedding-ada-002 (cl100k_base)
  • text-embedding-3-small (cl100k_base)
  • text-embedding-3-large (cl100k_base)
  • text-davinci-003 (p50k_base)
  • text-davinci-002 (p50k_base)
  • text-davinci-001 (r50k_base)
  • text-curie-001 (r50k_base)
  • text-babbage-001 (r50k_base)
  • text-ada-001 (r50k_base)
  • davinci (r50k_base)
  • curie (r50k_base)
  • babbage (r50k_base)
  • ada (r50k_base)
  • code-davinci-002 (p50k_base)
  • code-davinci-001 (p50k_base)
  • code-cushman-002 (p50k_base)
  • code-cushman-001 (p50k_base)
  • davinci-codex (p50k_base)
  • cushman-codex (p50k_base)
  • text-davinci-edit-001 (p50k_edit)
  • code-davinci-edit-001 (p50k_edit)
  • text-similarity-davinci-001 (r50k_base)
  • text-similarity-curie-001 (r50k_base)
  • text-similarity-babbage-001 (r50k_base)
  • text-similarity-ada-001 (r50k_base)
  • text-search-davinci-doc-001 (r50k_base)
  • text-search-curie-doc-001 (r50k_base)
  • text-search-babbage-doc-001 (r50k_base)
  • text-search-ada-doc-001 (r50k_base)
  • code-search-babbage-code-001 (r50k_base)
  • code-search-ada-code-001 (r50k_base)
  • gpt2 (gpt2)
  • gpt-2 (gpt2)

ttok --help

Usage: ttok [OPTIONS] [PROMPT]...

  Count and truncate text based on tokens

  To count tokens for text passed as arguments:

      ttok one two three

  To count tokens from stdin:

      cat input.txt | ttok

  To truncate to 100 tokens:

      cat input.txt | ttok -t 100

  To truncate to 100 tokens using the gpt2 model:

      cat input.txt | ttok -t 100 -m gpt2

  To view token integers:

      cat input.txt | ttok --encode

  To convert tokens back to text:

      ttok 9906 1917 --decode

  To see the details of the tokens:

      ttok "hello world" --tokens

  Outputs:

      [b'hello', b' world']

Options:
  --version               Show the version and exit.
  -i, --input FILENAME
  -t, --truncate INTEGER  Truncate to this many tokens
  -m, --model TEXT        Which model to use
  --encode, --tokens      Output token integers
  --decode                Convert token integers to text
  --tokens                Output full tokens
  --allow-special         Do not error on special tokens
  --help                  Show this message and exit.

You can also run this command using:

python -m ttok --help

Development

To contribute to this tool, first checkout the code. Then create a new virtual environment:

cd ttok
python -m venv venv
source venv/bin/activate

Now install the dependencies and test dependencies:

pip install -e '.[test]'

To run the tests:

pytest

About

Count and truncate text based on tokens

Resources

License

Stars

Watchers

Forks

Sponsor this project

 

Languages