tensorflow-wavelets is an implementation of Custom Layers for Neural Networks:
- Discrete Wavelets Transform Layer
- Duel Tree Complex Wavelets Transform Layer
- Multi Wavelets Transform Layer
pip install tensorflow-wavelets
import tensorflow_wavelets.Layers.DWT as DWT
import tensorflow_wavelets.Layers.DTCWT as DTCWT
import tensorflow_wavelets.Layers.DMWT as DMWT
# Custom Activation function Layer
import tensorflow_wavelets.Layers.Threshold as Threshold
from tensorflow import keras
model = keras.Sequential()
model.add(keras.Input(shape=(28, 28, 1)))
model.add(DWT.DWT(name="haar",concat=0))
model.add(keras.layers.Flatten())
model.add(keras.layers.Dense(nb_classes, activation="softmax"))
model.summary()
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
dwt_9_haar (DWT) (None, 14, 14, 4) 0
_________________________________________________________________
flatten_9 (Flatten) (None, 784) 0
_________________________________________________________________
dense_9 (Dense) (None, 10) 7850
=================================================================
Total params: 7,850
Trainable params: 7,850
Non-trainable params: 0
_________________________________________________________________
model = keras.Sequential()
model.add(layers.InputLayer(input_shape=(28, 28, 1)))
model.add(DWT(name="db4", concat=1))
model.summary()
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
dwt_db4 (DWT) (None, 34, 34, 1) 0
=================================================================
Total params: 0
Trainable params: 0
Non-trainable params: 0
_________________________________________________________________
from tensorflow.keras import layers
x_inp = layers.Input(shape=(512, 512, 1))
x = DMWT("ghm")(x_inp)
x = Threshold.Threshold(algo='sure', mode='hard')(x) # use "soft" or "hard"
x = IDMWT("ghm")(x)
model = Model(x_inp, x, name="MyModel")
model.summary()
Model: "MyModel"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_1 (InputLayer) [(None, 512, 512, 1)] 0
_________________________________________________________________
dmwt (DMWT) (None, 1024, 1024, 1) 0
_________________________________________________________________
sure_threshold (SureThreshol (None, 1024, 1024, 1) 0
_________________________________________________________________
idmwt (IDMWT) (None, 512, 512, 1) 0
=================================================================
Total params: 0
Trainable params: 0
Non-trainable params: 0
_________________________________________________________________
Free Software, Hell Yeah!